Cargando…
Design of Organic Electronic Materials With a Goal-Directed Generative Model Powered by Deep Neural Networks and High-Throughput Molecular Simulations
In recent years, generative machine learning approaches have attracted significant attention as an enabling approach for designing novel molecular materials with minimal design bias and thereby realizing more directed design for a specific materials property space. Further, data-driven approaches ha...
Autores principales: | Kwak, H. Shaun, An, Yuling, Giesen, David J., Hughes, Thomas F., Brown, Christopher T., Leswing, Karl, Abroshan, Hadi, Halls, Mathew D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8802168/ https://www.ncbi.nlm.nih.gov/pubmed/35111730 http://dx.doi.org/10.3389/fchem.2021.800370 |
Ejemplares similares
-
Active Learning Accelerates Design and Optimization of Hole-Transporting Materials for Organic Electronics
por: Abroshan, Hadi, et al.
Publicado: (2022) -
Development of scalable and generalizable machine learned force field for polymers
por: Mohanty, Shaswat, et al.
Publicado: (2023) -
High‐Throughput Discovery of Novel Cubic Crystal Materials Using Deep Generative Neural Networks
por: Zhao, Yong, et al.
Publicado: (2021) -
The Costs and Benefits of Goal-Directed Attention in Deep Convolutional Neural Networks
por: Luo, Xiaoliang, et al.
Publicado: (2021) -
Editorial: Driving Innovation in Organic Optoelectronic Materials With Physics-Based and Machine-Learning De Novo Methods
por: Winget, Paul, et al.
Publicado: (2022)