Cargando…
Comparison of machine-learning algorithms for the prediction of Current Procedural Terminology (CPT) codes from pathology reports
BACKGROUND: Pathology reports serve as an auditable trial of a patient’s clinical narrative, containing text pertaining to diagnosis, prognosis, and specimen processing. Recent works have utilized natural language processing (NLP) pipelines, which include rule-based or machine-learning analytics, to...
Autores principales: | Levy, Joshua, Vattikonda, Nishitha, Haudenschild, Christian, Christensen, Brock, Vaickus, Louis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8802304/ https://www.ncbi.nlm.nih.gov/pubmed/35127232 http://dx.doi.org/10.4103/jpi.jpi_52_21 |
Ejemplares similares
-
Development of an interactive web dashboard to facilitate the reexamination of pathology reports for instances of underbilling of CPT codes
por: Greenburg, Jack, et al.
Publicado: (2023) -
Topological Feature Extraction and Visualization of Whole Slide Images using Graph Neural Networks
por: Levy, Joshua, et al.
Publicado: (2021) -
Physician's current procedural terminology : CPT-94
Publicado: (1994) -
Developing current procedural terminology codes that describe the work performed by machines
por: Frank, Richard A., et al.
Publicado: (2022) -
PathFlowAI: A High-Throughput Workflow for Preprocessing, Deep Learning and Interpretation in Digital Pathology
por: Levy, Joshua J., et al.
Publicado: (2020)