Cargando…
Temporal network embedding framework with causal anonymous walks representations
Many tasks in graph machine learning, such as link prediction and node classification, are typically solved using representation learning. Each node or edge in the network is encoded via an embedding. Though there exists a lot of network embeddings for static graphs, the task becomes much more compl...
Autores principales: | Makarov, Ilya, Savchenko, Andrey, Korovko, Arseny, Sherstyuk, Leonid, Severin, Nikita, Kiselev, Dmitrii, Mikheev, Aleksandr, Babaev, Dmitrii |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8802774/ https://www.ncbi.nlm.nih.gov/pubmed/35174275 http://dx.doi.org/10.7717/peerj-cs.858 |
Ejemplares similares
-
Survey on graph embeddings and their applications to machine learning problems on graphs
por: Makarov, Ilya, et al.
Publicado: (2021) -
Fusion of text and graph information for machine learning problems on networks
por: Makarov, Ilya, et al.
Publicado: (2021) -
Online supervised attention-based recurrent depth estimation from monocular video
por: Maslov, Dmitrii, et al.
Publicado: (2020) -
Dual network embedding for representing research interests in the link prediction problem on co-authorship networks
por: Makarov, Ilya, et al.
Publicado: (2019) -
Efficient facial representations for age, gender and identity recognition in organizing photo albums using multi-output ConvNet
por: Savchenko, Andrey V.
Publicado: (2019)