Cargando…
TanP: A Multifunctional Anionic Peptide From Tityus stigmurus Scorpion Venom
Anionic peptides of scorpions are molecules rich in aspartic and/or glutamic acid residues and correspond to a class of peptides without disulfide bonds that are still little explored. TanP is a linear anionic peptide (50 amino acid residues and net charge −20) present in the venom gland of the scor...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8802776/ https://www.ncbi.nlm.nih.gov/pubmed/35111812 http://dx.doi.org/10.3389/fmolb.2021.785316 |
_version_ | 1784642740369227776 |
---|---|
author | de Melo, Menilla Maria Alves Oliveira, Verônica da Silva de Queiroz Neto, Moacir Fernandes Paiva, Weslley de Souza Torres-Rêgo, Manoela Silva, Sérgio Ruschi Bergamachi Pontes, Daniel de Lima Rocha, Hugo Alexandre Oliveira de Souza, Miguel Ângelo Fonseca da Silva-Júnior, Arnóbio Antônio Fernandes-Pedrosa, Matheus de Freitas |
author_facet | de Melo, Menilla Maria Alves Oliveira, Verônica da Silva de Queiroz Neto, Moacir Fernandes Paiva, Weslley de Souza Torres-Rêgo, Manoela Silva, Sérgio Ruschi Bergamachi Pontes, Daniel de Lima Rocha, Hugo Alexandre Oliveira de Souza, Miguel Ângelo Fonseca da Silva-Júnior, Arnóbio Antônio Fernandes-Pedrosa, Matheus de Freitas |
author_sort | de Melo, Menilla Maria Alves |
collection | PubMed |
description | Anionic peptides of scorpions are molecules rich in aspartic and/or glutamic acid residues and correspond to a class of peptides without disulfide bonds that are still little explored. TanP is a linear anionic peptide (50 amino acid residues and net charge −20) present in the venom gland of the scorpion, Tityus stigmurus, with chelating properties for Cu(2+) ion and immunomodulatory properties. The therapeutic application of chelating molecules is related to cases of acute or chronic intoxication by metals, neurodegenerative diseases, hematological diseases, healing of skin wounds, cardiovascular diseases, and cancer. In this approach, the chelating activity of TanP was evaluated in relation to new metal ions (Fe(2+) and Zn(2+)) of biological importance, as well as its antioxidant, hemostatic, immunomodulatory, and healing potential, aiming to expand the biological and biotechnological potential of this peptide. TanP (25 µM) was able to form stable complexes with Fe(2+) in a ratio of 1:5 (TanP: Fe(2+)). Theoretical results suggest that TanP can work as a sensor to identify and quantify Fe(2+) ions. The fluorescence intensity of TanP (1.12 µM) decreased significantly after the addition of Fe(2+), obtaining the highest ratio 1: 7.4 (TanP: Fe(2+)) that led to the lowest fluorescence intensity. For Zn(2+), no relevant spectral change was noted. TanP (50 µM) showed a maximum of 3% of hemolytic activity, demonstrating biocompatibility, as well as exhibiting a 1,1-diphenyl-2-picrylhydrazyl radical–scavenging activity of above 70% at all the concentrations tested (1–25 μM), and 89.7% iron-chelating activity at 25 μM and 96% hydroxyl radical–scavenging activity at 73.6 μM. In addition, TanP (12.5 and 25 µM) revealed an anticoagulant effect, prolonging the clotting time in prothrombin time and activated partial thromboplastin time assays, with no fibrinogenolytic activity. TanP (12.5 and 25 µM) induced the release of TNF-α by murine macrophages, in the absence of lipopolysaccharides, with a concentration-dependent increase and also stimulated the migration of 3T3 cells in the in vitro healing assay. Thus, TanP revealed a multifunctional potential, being useful as a prototype for the development of new therapeutic and biotechnological agents. |
format | Online Article Text |
id | pubmed-8802776 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-88027762022-02-01 TanP: A Multifunctional Anionic Peptide From Tityus stigmurus Scorpion Venom de Melo, Menilla Maria Alves Oliveira, Verônica da Silva de Queiroz Neto, Moacir Fernandes Paiva, Weslley de Souza Torres-Rêgo, Manoela Silva, Sérgio Ruschi Bergamachi Pontes, Daniel de Lima Rocha, Hugo Alexandre Oliveira de Souza, Miguel Ângelo Fonseca da Silva-Júnior, Arnóbio Antônio Fernandes-Pedrosa, Matheus de Freitas Front Mol Biosci Molecular Biosciences Anionic peptides of scorpions are molecules rich in aspartic and/or glutamic acid residues and correspond to a class of peptides without disulfide bonds that are still little explored. TanP is a linear anionic peptide (50 amino acid residues and net charge −20) present in the venom gland of the scorpion, Tityus stigmurus, with chelating properties for Cu(2+) ion and immunomodulatory properties. The therapeutic application of chelating molecules is related to cases of acute or chronic intoxication by metals, neurodegenerative diseases, hematological diseases, healing of skin wounds, cardiovascular diseases, and cancer. In this approach, the chelating activity of TanP was evaluated in relation to new metal ions (Fe(2+) and Zn(2+)) of biological importance, as well as its antioxidant, hemostatic, immunomodulatory, and healing potential, aiming to expand the biological and biotechnological potential of this peptide. TanP (25 µM) was able to form stable complexes with Fe(2+) in a ratio of 1:5 (TanP: Fe(2+)). Theoretical results suggest that TanP can work as a sensor to identify and quantify Fe(2+) ions. The fluorescence intensity of TanP (1.12 µM) decreased significantly after the addition of Fe(2+), obtaining the highest ratio 1: 7.4 (TanP: Fe(2+)) that led to the lowest fluorescence intensity. For Zn(2+), no relevant spectral change was noted. TanP (50 µM) showed a maximum of 3% of hemolytic activity, demonstrating biocompatibility, as well as exhibiting a 1,1-diphenyl-2-picrylhydrazyl radical–scavenging activity of above 70% at all the concentrations tested (1–25 μM), and 89.7% iron-chelating activity at 25 μM and 96% hydroxyl radical–scavenging activity at 73.6 μM. In addition, TanP (12.5 and 25 µM) revealed an anticoagulant effect, prolonging the clotting time in prothrombin time and activated partial thromboplastin time assays, with no fibrinogenolytic activity. TanP (12.5 and 25 µM) induced the release of TNF-α by murine macrophages, in the absence of lipopolysaccharides, with a concentration-dependent increase and also stimulated the migration of 3T3 cells in the in vitro healing assay. Thus, TanP revealed a multifunctional potential, being useful as a prototype for the development of new therapeutic and biotechnological agents. Frontiers Media S.A. 2022-01-17 /pmc/articles/PMC8802776/ /pubmed/35111812 http://dx.doi.org/10.3389/fmolb.2021.785316 Text en Copyright © 2022 Melo, Oliveira, Queiroz Neto, Paiva, Torres-Rêgo, Silva, Pontes, Rocha, Souza, Silva-Júnior and Fernandes-Pedrosa. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Molecular Biosciences de Melo, Menilla Maria Alves Oliveira, Verônica da Silva de Queiroz Neto, Moacir Fernandes Paiva, Weslley de Souza Torres-Rêgo, Manoela Silva, Sérgio Ruschi Bergamachi Pontes, Daniel de Lima Rocha, Hugo Alexandre Oliveira de Souza, Miguel Ângelo Fonseca da Silva-Júnior, Arnóbio Antônio Fernandes-Pedrosa, Matheus de Freitas TanP: A Multifunctional Anionic Peptide From Tityus stigmurus Scorpion Venom |
title | TanP: A Multifunctional Anionic Peptide From Tityus stigmurus Scorpion Venom |
title_full | TanP: A Multifunctional Anionic Peptide From Tityus stigmurus Scorpion Venom |
title_fullStr | TanP: A Multifunctional Anionic Peptide From Tityus stigmurus Scorpion Venom |
title_full_unstemmed | TanP: A Multifunctional Anionic Peptide From Tityus stigmurus Scorpion Venom |
title_short | TanP: A Multifunctional Anionic Peptide From Tityus stigmurus Scorpion Venom |
title_sort | tanp: a multifunctional anionic peptide from tityus stigmurus scorpion venom |
topic | Molecular Biosciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8802776/ https://www.ncbi.nlm.nih.gov/pubmed/35111812 http://dx.doi.org/10.3389/fmolb.2021.785316 |
work_keys_str_mv | AT demelomenillamariaalves tanpamultifunctionalanionicpeptidefromtityusstigmurusscorpionvenom AT oliveiraveronicadasilva tanpamultifunctionalanionicpeptidefromtityusstigmurusscorpionvenom AT dequeiroznetomoacirfernandes tanpamultifunctionalanionicpeptidefromtityusstigmurusscorpionvenom AT paivaweslleydesouza tanpamultifunctionalanionicpeptidefromtityusstigmurusscorpionvenom AT torresregomanoela tanpamultifunctionalanionicpeptidefromtityusstigmurusscorpionvenom AT silvasergioruschibergamachi tanpamultifunctionalanionicpeptidefromtityusstigmurusscorpionvenom AT pontesdanieldelima tanpamultifunctionalanionicpeptidefromtityusstigmurusscorpionvenom AT rochahugoalexandreoliveira tanpamultifunctionalanionicpeptidefromtityusstigmurusscorpionvenom AT desouzamiguelangelofonseca tanpamultifunctionalanionicpeptidefromtityusstigmurusscorpionvenom AT dasilvajuniorarnobioantonio tanpamultifunctionalanionicpeptidefromtityusstigmurusscorpionvenom AT fernandespedrosamatheusdefreitas tanpamultifunctionalanionicpeptidefromtityusstigmurusscorpionvenom |