Cargando…
The use of statistical and machine learning tools to accurately quantify the energy performance of residential buildings
Prediction of building energy consumption is key to achieving energy efficiency and sustainability. Nowadays, the analysis or prediction of building energy consumption using building energy simulation tools facilitates the design and operation of energy-efficient buildings. The collection and genera...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8802788/ https://www.ncbi.nlm.nih.gov/pubmed/35174273 http://dx.doi.org/10.7717/peerj-cs.856 |
_version_ | 1784642744069652480 |
---|---|
author | Ibrahim, Dina M. Almhafdy, Abdulbasit Al-Shargabi, Amal A. Alghieth, Manal Elragi, Ahmed Chiclana, Francisco |
author_facet | Ibrahim, Dina M. Almhafdy, Abdulbasit Al-Shargabi, Amal A. Alghieth, Manal Elragi, Ahmed Chiclana, Francisco |
author_sort | Ibrahim, Dina M. |
collection | PubMed |
description | Prediction of building energy consumption is key to achieving energy efficiency and sustainability. Nowadays, the analysis or prediction of building energy consumption using building energy simulation tools facilitates the design and operation of energy-efficient buildings. The collection and generation of building data are essential components of machine learning models; however, there is still a lack of such data covering certain weather conditions. Such as those related to arid climate areas. This paper fills this identified gap with the creation of a new dataset for energy consumption of 3,840 records of typical residential buildings of the Saudi Arabia region of Qassim, and investigates the impact of residential buildings’ eight input variables (Building Size, Floor Height, Glazing Area, Wall Area, window to wall ratio (WWR), Win Glazing U-value, Roof U-value, and External Wall U-value) on the heating load (HL) and cooling load (CL) output variables. A number of classical and non-parametric statistical tools are used to uncover the most strongly associated input variables with each one of the output variables. Then, the machine learning Multiple linear regression (MLR) and Multilayer perceptron (MLP) methods are used to estimate HL and CL, and their results compared using the Mean Absolute Error (MAE), the Root Mean Square Error (RMSE), and coefficient of determination (R(2)) performance measures. The use of the IES simulation software on the new dataset concludes that MLP accurately estimates both HL and CL with low MAE, RMSE, and R(2), which evidences the feasibility and accuracy of applying machine learning methods to estimate building energy consumption. |
format | Online Article Text |
id | pubmed-8802788 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | PeerJ Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-88027882022-02-15 The use of statistical and machine learning tools to accurately quantify the energy performance of residential buildings Ibrahim, Dina M. Almhafdy, Abdulbasit Al-Shargabi, Amal A. Alghieth, Manal Elragi, Ahmed Chiclana, Francisco PeerJ Comput Sci Artificial Intelligence Prediction of building energy consumption is key to achieving energy efficiency and sustainability. Nowadays, the analysis or prediction of building energy consumption using building energy simulation tools facilitates the design and operation of energy-efficient buildings. The collection and generation of building data are essential components of machine learning models; however, there is still a lack of such data covering certain weather conditions. Such as those related to arid climate areas. This paper fills this identified gap with the creation of a new dataset for energy consumption of 3,840 records of typical residential buildings of the Saudi Arabia region of Qassim, and investigates the impact of residential buildings’ eight input variables (Building Size, Floor Height, Glazing Area, Wall Area, window to wall ratio (WWR), Win Glazing U-value, Roof U-value, and External Wall U-value) on the heating load (HL) and cooling load (CL) output variables. A number of classical and non-parametric statistical tools are used to uncover the most strongly associated input variables with each one of the output variables. Then, the machine learning Multiple linear regression (MLR) and Multilayer perceptron (MLP) methods are used to estimate HL and CL, and their results compared using the Mean Absolute Error (MAE), the Root Mean Square Error (RMSE), and coefficient of determination (R(2)) performance measures. The use of the IES simulation software on the new dataset concludes that MLP accurately estimates both HL and CL with low MAE, RMSE, and R(2), which evidences the feasibility and accuracy of applying machine learning methods to estimate building energy consumption. PeerJ Inc. 2022-01-26 /pmc/articles/PMC8802788/ /pubmed/35174273 http://dx.doi.org/10.7717/peerj-cs.856 Text en © 2022 Ibrahim et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. |
spellingShingle | Artificial Intelligence Ibrahim, Dina M. Almhafdy, Abdulbasit Al-Shargabi, Amal A. Alghieth, Manal Elragi, Ahmed Chiclana, Francisco The use of statistical and machine learning tools to accurately quantify the energy performance of residential buildings |
title | The use of statistical and machine learning tools to accurately quantify the energy performance of residential buildings |
title_full | The use of statistical and machine learning tools to accurately quantify the energy performance of residential buildings |
title_fullStr | The use of statistical and machine learning tools to accurately quantify the energy performance of residential buildings |
title_full_unstemmed | The use of statistical and machine learning tools to accurately quantify the energy performance of residential buildings |
title_short | The use of statistical and machine learning tools to accurately quantify the energy performance of residential buildings |
title_sort | use of statistical and machine learning tools to accurately quantify the energy performance of residential buildings |
topic | Artificial Intelligence |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8802788/ https://www.ncbi.nlm.nih.gov/pubmed/35174273 http://dx.doi.org/10.7717/peerj-cs.856 |
work_keys_str_mv | AT ibrahimdinam theuseofstatisticalandmachinelearningtoolstoaccuratelyquantifytheenergyperformanceofresidentialbuildings AT almhafdyabdulbasit theuseofstatisticalandmachinelearningtoolstoaccuratelyquantifytheenergyperformanceofresidentialbuildings AT alshargabiamala theuseofstatisticalandmachinelearningtoolstoaccuratelyquantifytheenergyperformanceofresidentialbuildings AT alghiethmanal theuseofstatisticalandmachinelearningtoolstoaccuratelyquantifytheenergyperformanceofresidentialbuildings AT elragiahmed theuseofstatisticalandmachinelearningtoolstoaccuratelyquantifytheenergyperformanceofresidentialbuildings AT chiclanafrancisco theuseofstatisticalandmachinelearningtoolstoaccuratelyquantifytheenergyperformanceofresidentialbuildings AT ibrahimdinam useofstatisticalandmachinelearningtoolstoaccuratelyquantifytheenergyperformanceofresidentialbuildings AT almhafdyabdulbasit useofstatisticalandmachinelearningtoolstoaccuratelyquantifytheenergyperformanceofresidentialbuildings AT alshargabiamala useofstatisticalandmachinelearningtoolstoaccuratelyquantifytheenergyperformanceofresidentialbuildings AT alghiethmanal useofstatisticalandmachinelearningtoolstoaccuratelyquantifytheenergyperformanceofresidentialbuildings AT elragiahmed useofstatisticalandmachinelearningtoolstoaccuratelyquantifytheenergyperformanceofresidentialbuildings AT chiclanafrancisco useofstatisticalandmachinelearningtoolstoaccuratelyquantifytheenergyperformanceofresidentialbuildings |