Cargando…

An adaptable analysis workflow for characterization of platelet spreading and morphology

The assessment of platelet spreading through light microscopy, and the subsequent quantification of parameters such as surface area and circularity, is a key assay for many platelet biologists. Here we present an analysis workflow which robustly segments individual platelets to facilitate the analys...

Descripción completa

Detalles Bibliográficos
Autores principales: Pike, Jeremy A., Simms, Victoria A., Smith, Christopher W., Morgan, Neil V., Khan, Abdullah O., Poulter, Natalie S., Styles, Iain B., Thomas, Steven G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8802896/
https://www.ncbi.nlm.nih.gov/pubmed/32321340
http://dx.doi.org/10.1080/09537104.2020.1748588
Descripción
Sumario:The assessment of platelet spreading through light microscopy, and the subsequent quantification of parameters such as surface area and circularity, is a key assay for many platelet biologists. Here we present an analysis workflow which robustly segments individual platelets to facilitate the analysis of large numbers of cells while minimizing user bias. Image segmentation is performed by interactive learning and touching platelets are separated with an efficient semi-automated protocol. We also use machine learning methods to robustly automate the classification of platelets into different subtypes. These adaptable and reproducible workflows are made freely available and are implemented using the open-source software KNIME and ilastik.