Cargando…

Optofluidic flow meter for sub-nanoliter per minute flow measurements

SIGNIFICANCE: Performance improvements in microfluidic systems depend on accurate measurement and fluid control on the micro- and nanoscales. New applications are continuously leading to lower volumetric flow rates. AIM: We focus on improving an optofluidic system for measuring and calibrating micro...

Descripción completa

Detalles Bibliográficos
Autores principales: Sadeghi, Jalal, Patrone, Paul N., Kearsley, Anthony J., Cooksey, Gregory A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Society of Photo-Optical Instrumentation Engineers 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8802908/
https://www.ncbi.nlm.nih.gov/pubmed/35102729
http://dx.doi.org/10.1117/1.JBO.27.1.017001
Descripción
Sumario:SIGNIFICANCE: Performance improvements in microfluidic systems depend on accurate measurement and fluid control on the micro- and nanoscales. New applications are continuously leading to lower volumetric flow rates. AIM: We focus on improving an optofluidic system for measuring and calibrating microflows to the sub-nanoliter per minute range. APPROACH: Measurements rely on an optofluidic system that delivers excitation light and records fluorescence in a precise interrogation region of a microfluidic channel. Exploiting a scaling relationship between the flow rate and fluorescence emission after photobleaching, the system enables real-time determination of flow rates. RESULTS: Here, we demonstrate improved calibration of a flow controller to 1% uncertainty. Further, the resolution of the optofluidic flow meter improved to less than [Formula: see text] with 5% uncertainty using a molecule with a 14-fold smaller diffusion coefficient than our previous report. CONCLUSIONS: We demonstrate new capabilities in sub-nanoliter per minute flow control and measurement that are generalizable to cutting-edge light-material interaction and molecular diffusion for chemical and biomedical industries.