Cargando…
An improved X-means and isolation forest based methodology for network traffic anomaly detection
Anomaly detection in network traffic is becoming a challenging task due to the complexity of large-scale networks and the proliferation of various social network applications. In the actual industrial environment, only recently obtained unlabelled data can be used as the training set. The accuracy o...
Autores principales: | Feng, Yifan, Cai, Weihong, Yue, Haoyu, Xu, Jianlong, Lin, Yan, Chen, Jiaxin, Hu, Zijun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8803200/ https://www.ncbi.nlm.nih.gov/pubmed/35100305 http://dx.doi.org/10.1371/journal.pone.0263423 |
Ejemplares similares
-
Traffic anomaly detection
por: Cuadra-Sánchez, Antonio, et al.
Publicado: (2015) -
Data-Driven Network Analysis for Anomaly Traffic Detection
por: Alam, Shumon, et al.
Publicado: (2023) -
Anomaly Detection using the "Isolation Forest" algorithm
por: Gerster, David
Publicado: (2015) -
Anomaly Detection Module for Network Traffic Monitoring in Public Institutions
por: Wawrowski, Łukasz, et al.
Publicado: (2023) -
Network classification for traffic management: anomaly detection, feature selection, clustering and classification
por: Tari, Zahir, et al.
Publicado: (2020)