Cargando…
A hybrid approach based on deep learning and level set formulation for liver segmentation in CT images
Accurate liver segmentation is essential for radiation therapy planning of hepatocellular carcinoma and absorbed dose calculation. However, liver segmentation is a challenging task due to the anatomical variability in both shape and size and the low contrast between liver and its surrounding organs....
Autores principales: | Gong, Zhaoxuan, Guo, Cui, Guo, Wei, Zhao, Dazhe, Tan, Wenjun, Zhou, Wei, Zhang, Guodong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8803306/ https://www.ncbi.nlm.nih.gov/pubmed/34873831 http://dx.doi.org/10.1002/acm2.13482 |
Ejemplares similares
-
Impact of CT reconstruction algorithm on auto‐segmentation performance
por: Miller, Claudia, et al.
Publicado: (2019) -
Markerless Liver Tumor Localization Using Internal Liver Volume Delineated By Four-Dimensional Cone-Beam CT
por: Mizukami, Naohisa, et al.
Publicado: (2021) -
Segmentation of Clinical Target Volume From CT Images for Cervical
Cancer Using Deep Learning
por: Huang, Mingxu, et al.
Publicado: (2023) -
Geometric and dosimetric evaluation of deep learning based auto‐segmentation for clinical target volume on breast cancer
por: Zhong, Yang, et al.
Publicado: (2023) -
Deep learning‐based auto‐segmentation of clinical target volumes for radiotherapy treatment of cervical cancer
por: Ma, Chen‐Ying, et al.
Publicado: (2021)