Cargando…
Mechanism of Gegen Qinlian Decoction Regulating ABTB1 Expression in Colorectal Cancer Metastasis Based on PI3K/AKT/FOXO1 Pathway
It was to investigate the role of Gegen Qinlian decoction (GQD) in the regulation of ABTB1 gene based on PI3K/AKT/FOXO1 signaling pathway in colorectal cancer (CRC) metastasis. In this study, 10 cases of the CRC mouse model were established by inoculating CT26 cells into the spleen of mice, which we...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8803423/ https://www.ncbi.nlm.nih.gov/pubmed/35111848 http://dx.doi.org/10.1155/2022/8131531 |
Sumario: | It was to investigate the role of Gegen Qinlian decoction (GQD) in the regulation of ABTB1 gene based on PI3K/AKT/FOXO1 signaling pathway in colorectal cancer (CRC) metastasis. In this study, 10 cases of the CRC mouse model were established by inoculating CT26 cells into the spleen of mice, which were divided into the experimental group and the control group, 5 cases in each group; the control group was intragastrically administered with normal saline 0.3 mL/d, and the experimental group was intragastrically administered with GQD 0.2 mL/d at a ratio of 0.2 g medicinal materials/10 g for 10 days and sacrificed, and pathological sections were made. The expression density of signaling pathway PI3K/AKT/FOXO1 as well as gene ABTB1 was detected in the sections of the two groups, and the mechanism of action of this gene in the two groups of mice was studied. It was found that the densities of p-PI3K, p-AKT, and p-FOXO1 in the experimental group of mice were 26.55 g/cm(3), 70.2 g/cm(3), and 24.36 g/cm(3), respectively, which were significantly increased compared with the control group, P < 0.05; the density of ABTB1 was 35.4 g/cm(3), which was significantly increased compared with the control group, P < 0.05; the proliferation and migration ability of CRC cells in the experimental group were significantly decreased, P < 0.05. GQD can promote the expression of ABTB1 by activating the PI3K/AKT/FOXO1 signaling pathway, in order to inhibit the proliferation and growth ability of CRC cells. |
---|