Cargando…
A New Hierarchical Temporal Memory Algorithm Based on Activation Intensity
As a human-cortex-inspired computing model, hierarchical temporal memory (HTM) has shown great promise in sequence learning and has been applied to various time-series applications. HTM uses the combination of columns and neurons to learn the temporal patterns within the sequence. However, the conve...
Autores principales: | Niu, Dejiao, Yang, Le, Cai, Tao, Li, Lei, Wu, Xudong, Wang, Zhidong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8803450/ https://www.ncbi.nlm.nih.gov/pubmed/35111211 http://dx.doi.org/10.1155/2022/6072316 |
Ejemplares similares
-
A Fast Spatial Pool Learning Algorithm of Hierarchical Temporal Memory Based on Minicolumn's Self-Nomination
por: Li, Lei, et al.
Publicado: (2021) -
A New NVM Device Driver for IoT Time Series Database
por: Cai, Tao, et al.
Publicado: (2022) -
A New Embedded Key–Value Store for NVM Device Simulator
por: Cai, Tao, et al.
Publicado: (2020) -
Information-theoretic analysis of Hierarchical Temporal Memory-Spatial Pooler algorithm with a new upper bound for the standard information bottleneck method
por: Sanati, Shiva, et al.
Publicado: (2023) -
GridHTM: Grid-Based Hierarchical Temporal Memory for Anomaly Detection in Videos
por: Monakhov, Vladimir, et al.
Publicado: (2023)