Cargando…

Filtering respiratory motion artifact from resting state fMRI data in infant and toddler populations

The importance of motion correction when processing resting state functional magnetic resonance imaging (rs-fMRI) data is well-established in adult cohorts. This includes adjustments based on self-limited, large amplitude subject head motion, as well as factitious rhythmic motion induced by respirat...

Descripción completa

Detalles Bibliográficos
Autores principales: Kaplan, Sydney, Meyer, Dominique, Miranda-Dominguez, Oscar, Perrone, Anders, Earl, Eric, Alexopoulos, Dimitrios, Barch, Deanna M., Day, Trevor K.M., Dust, Joseph, Eggebrecht, Adam T., Feczko, Eric, Kardan, Omid, Kenley, Jeanette K., Rogers, Cynthia E., Wheelock, Muriah D., Yacoub, Essa, Rosenberg, Monica, Elison, Jed T., Fair, Damien A., Smyser, Christopher D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Academic Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8803544/
https://www.ncbi.nlm.nih.gov/pubmed/34942363
http://dx.doi.org/10.1016/j.neuroimage.2021.118838
Descripción
Sumario:The importance of motion correction when processing resting state functional magnetic resonance imaging (rs-fMRI) data is well-established in adult cohorts. This includes adjustments based on self-limited, large amplitude subject head motion, as well as factitious rhythmic motion induced by respiration. In adults, such respiration artifact can be effectively removed by applying a notch filter to the motion trace, resulting in higher amounts of data retained after frame censoring (e.g., “scrubbing”) and more reliable correlation values. Due to the unique physiological and behavioral characteristics of infants and toddlers, rs-fMRI processing pipelines, including methods to identify and remove colored noise due to subject motion, must be appropriately modified to accurately reflect true neuronal signal. These younger cohorts are characterized by higher respiration rates and lower-amplitude head movements than adults; thus, the presence and significance of comparable respiratory artifact and the subsequent necessity of applying similar techniques remain unknown. Herein, we identify and characterize the consistent presence of respiratory artifact in rs-fMRI data collected during natural sleep in infants and toddlers across two independent cohorts (aged 8–24 months) analyzed using different pipelines. We further demonstrate how removing this artifact using an age-specific notch filter allows for both improved data quality and data retention in measured results. Importantly, this work reveals the critical need to identify and address respiratory-driven head motion in fMRI data acquired in young populations through the use of age-specific motion filters as a mechanism to optimize the accuracy of measured results in this population.