Cargando…

(18)F-FDG PET baseline radiomics features improve the prediction of treatment outcome in diffuse large B-cell lymphoma

PURPOSE: Accurate prognostic markers are urgently needed to identify diffuse large B-Cell lymphoma (DLBCL) patients at high risk of progression or relapse. Our purpose was to investigate the potential added value of baseline radiomics features to the international prognostic index (IPI) in predictin...

Descripción completa

Detalles Bibliográficos
Autores principales: Eertink, Jakoba J., van de Brug, Tim, Wiegers, Sanne E., Zwezerijnen, Gerben J. C., Pfaehler, Elisabeth A. G., Lugtenburg, Pieternella J., van der Holt, Bronno, de Vet, Henrica C. W., Hoekstra, Otto S., Boellaard, Ronald, Zijlstra, Josée M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8803694/
https://www.ncbi.nlm.nih.gov/pubmed/34405277
http://dx.doi.org/10.1007/s00259-021-05480-3
Descripción
Sumario:PURPOSE: Accurate prognostic markers are urgently needed to identify diffuse large B-Cell lymphoma (DLBCL) patients at high risk of progression or relapse. Our purpose was to investigate the potential added value of baseline radiomics features to the international prognostic index (IPI) in predicting outcome after first-line treatment. METHODS: Three hundred seventeen newly diagnosed DLBCL patients were included. Lesions were delineated using a semi-automated segmentation method (standardized uptake value ≥ 4.0), and 490 radiomics features were extracted. We used logistic regression with backward feature selection to predict 2-year time to progression (TTP). The area under the curve (AUC) of the receiver operator characteristic curve was calculated to assess model performance. High-risk groups were defined based on prevalence of events; diagnostic performance was assessed using positive and negative predictive values. RESULTS: The IPI model yielded an AUC of 0.68. The optimal radiomics model comprised the natural logarithms of metabolic tumor volume (MTV) and of SUV(peak) and the maximal distance between the largest lesion and any other lesion (Dmax(bulk), AUC 0.76). Combining radiomics and clinical features showed that a combination of tumor- (MTV, SUV(peak) and Dmax(bulk)) and patient-related parameters (WHO performance status and age > 60 years) performed best (AUC 0.79). Adding radiomics features to clinical predictors increased PPV with 15%, with more accurate selection of high-risk patients compared to the IPI model (progression at 2-year TTP, 44% vs 28%, respectively). CONCLUSION: Prediction models using baseline radiomics combined with currently used clinical predictors identify patients at risk of relapse at baseline and significantly improved model performance. TRIAL REGISTRATION NUMBER AND DATE: EudraCT: 2006–005,174-42, 01–08-2008. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00259-021-05480-3.