Cargando…
A 3D deep learning model to predict the diagnosis of dementia with Lewy bodies, Alzheimer’s disease, and mild cognitive impairment using brain 18F-FDG PET
PURPOSE: The purpose of this study is to develop and validate a 3D deep learning model that predicts the final clinical diagnosis of Alzheimer’s disease (AD), dementia with Lewy bodies (DLB), mild cognitive impairment due to Alzheimer’s disease (MCI-AD), and cognitively normal (CN) using fluorine 18...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8803724/ https://www.ncbi.nlm.nih.gov/pubmed/34328531 http://dx.doi.org/10.1007/s00259-021-05483-0 |
_version_ | 1784642930377490432 |
---|---|
author | Etminani, Kobra Soliman, Amira Davidsson, Anette Chang, Jose R. Martínez-Sanchis, Begoña Byttner, Stefan Camacho, Valle Bauckneht, Matteo Stegeran, Roxana Ressner, Marcus Agudelo-Cifuentes, Marc Chincarini, Andrea Brendel, Matthias Rominger, Axel Bruffaerts, Rose Vandenberghe, Rik Kramberger, Milica G. Trost, Maja Nicastro, Nicolas Frisoni, Giovanni B. Lemstra, Afina W. van Berckel, Bart N. M. Pilotto, Andrea Padovani, Alessandro Morbelli, Silvia Aarsland, Dag Nobili, Flavio Garibotto, Valentina Ochoa-Figueroa, Miguel |
author_facet | Etminani, Kobra Soliman, Amira Davidsson, Anette Chang, Jose R. Martínez-Sanchis, Begoña Byttner, Stefan Camacho, Valle Bauckneht, Matteo Stegeran, Roxana Ressner, Marcus Agudelo-Cifuentes, Marc Chincarini, Andrea Brendel, Matthias Rominger, Axel Bruffaerts, Rose Vandenberghe, Rik Kramberger, Milica G. Trost, Maja Nicastro, Nicolas Frisoni, Giovanni B. Lemstra, Afina W. van Berckel, Bart N. M. Pilotto, Andrea Padovani, Alessandro Morbelli, Silvia Aarsland, Dag Nobili, Flavio Garibotto, Valentina Ochoa-Figueroa, Miguel |
author_sort | Etminani, Kobra |
collection | PubMed |
description | PURPOSE: The purpose of this study is to develop and validate a 3D deep learning model that predicts the final clinical diagnosis of Alzheimer’s disease (AD), dementia with Lewy bodies (DLB), mild cognitive impairment due to Alzheimer’s disease (MCI-AD), and cognitively normal (CN) using fluorine 18 fluorodeoxyglucose PET (18F-FDG PET) and compare model’s performance to that of multiple expert nuclear medicine physicians’ readers. MATERIALS AND METHODS: Retrospective 18F-FDG PET scans for AD, MCI-AD, and CN were collected from Alzheimer’s disease neuroimaging initiative (556 patients from 2005 to 2020), and CN and DLB cases were from European DLB Consortium (201 patients from 2005 to 2018). The introduced 3D convolutional neural network was trained using 90% of the data and externally tested using 10% as well as comparison to human readers on the same independent test set. The model’s performance was analyzed with sensitivity, specificity, precision, F1 score, receiver operating characteristic (ROC). The regional metabolic changes driving classification were visualized using uniform manifold approximation and projection (UMAP) and network attention. RESULTS: The proposed model achieved area under the ROC curve of 96.2% (95% confidence interval: 90.6–100) on predicting the final diagnosis of DLB in the independent test set, 96.4% (92.7–100) in AD, 71.4% (51.6–91.2) in MCI-AD, and 94.7% (90–99.5) in CN, which in ROC space outperformed human readers performance. The network attention depicted the posterior cingulate cortex is important for each neurodegenerative disease, and the UMAP visualization of the extracted features by the proposed model demonstrates the reality of development of the given disorders. CONCLUSION: Using only 18F-FDG PET of the brain, a 3D deep learning model could predict the final diagnosis of the most common neurodegenerative disorders which achieved a competitive performance compared to the human readers as well as their consensus. |
format | Online Article Text |
id | pubmed-8803724 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-88037242022-02-02 A 3D deep learning model to predict the diagnosis of dementia with Lewy bodies, Alzheimer’s disease, and mild cognitive impairment using brain 18F-FDG PET Etminani, Kobra Soliman, Amira Davidsson, Anette Chang, Jose R. Martínez-Sanchis, Begoña Byttner, Stefan Camacho, Valle Bauckneht, Matteo Stegeran, Roxana Ressner, Marcus Agudelo-Cifuentes, Marc Chincarini, Andrea Brendel, Matthias Rominger, Axel Bruffaerts, Rose Vandenberghe, Rik Kramberger, Milica G. Trost, Maja Nicastro, Nicolas Frisoni, Giovanni B. Lemstra, Afina W. van Berckel, Bart N. M. Pilotto, Andrea Padovani, Alessandro Morbelli, Silvia Aarsland, Dag Nobili, Flavio Garibotto, Valentina Ochoa-Figueroa, Miguel Eur J Nucl Med Mol Imaging Original Article PURPOSE: The purpose of this study is to develop and validate a 3D deep learning model that predicts the final clinical diagnosis of Alzheimer’s disease (AD), dementia with Lewy bodies (DLB), mild cognitive impairment due to Alzheimer’s disease (MCI-AD), and cognitively normal (CN) using fluorine 18 fluorodeoxyglucose PET (18F-FDG PET) and compare model’s performance to that of multiple expert nuclear medicine physicians’ readers. MATERIALS AND METHODS: Retrospective 18F-FDG PET scans for AD, MCI-AD, and CN were collected from Alzheimer’s disease neuroimaging initiative (556 patients from 2005 to 2020), and CN and DLB cases were from European DLB Consortium (201 patients from 2005 to 2018). The introduced 3D convolutional neural network was trained using 90% of the data and externally tested using 10% as well as comparison to human readers on the same independent test set. The model’s performance was analyzed with sensitivity, specificity, precision, F1 score, receiver operating characteristic (ROC). The regional metabolic changes driving classification were visualized using uniform manifold approximation and projection (UMAP) and network attention. RESULTS: The proposed model achieved area under the ROC curve of 96.2% (95% confidence interval: 90.6–100) on predicting the final diagnosis of DLB in the independent test set, 96.4% (92.7–100) in AD, 71.4% (51.6–91.2) in MCI-AD, and 94.7% (90–99.5) in CN, which in ROC space outperformed human readers performance. The network attention depicted the posterior cingulate cortex is important for each neurodegenerative disease, and the UMAP visualization of the extracted features by the proposed model demonstrates the reality of development of the given disorders. CONCLUSION: Using only 18F-FDG PET of the brain, a 3D deep learning model could predict the final diagnosis of the most common neurodegenerative disorders which achieved a competitive performance compared to the human readers as well as their consensus. Springer Berlin Heidelberg 2021-07-30 2022 /pmc/articles/PMC8803724/ /pubmed/34328531 http://dx.doi.org/10.1007/s00259-021-05483-0 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Original Article Etminani, Kobra Soliman, Amira Davidsson, Anette Chang, Jose R. Martínez-Sanchis, Begoña Byttner, Stefan Camacho, Valle Bauckneht, Matteo Stegeran, Roxana Ressner, Marcus Agudelo-Cifuentes, Marc Chincarini, Andrea Brendel, Matthias Rominger, Axel Bruffaerts, Rose Vandenberghe, Rik Kramberger, Milica G. Trost, Maja Nicastro, Nicolas Frisoni, Giovanni B. Lemstra, Afina W. van Berckel, Bart N. M. Pilotto, Andrea Padovani, Alessandro Morbelli, Silvia Aarsland, Dag Nobili, Flavio Garibotto, Valentina Ochoa-Figueroa, Miguel A 3D deep learning model to predict the diagnosis of dementia with Lewy bodies, Alzheimer’s disease, and mild cognitive impairment using brain 18F-FDG PET |
title | A 3D deep learning model to predict the diagnosis of dementia with Lewy bodies, Alzheimer’s disease, and mild cognitive impairment using brain 18F-FDG PET |
title_full | A 3D deep learning model to predict the diagnosis of dementia with Lewy bodies, Alzheimer’s disease, and mild cognitive impairment using brain 18F-FDG PET |
title_fullStr | A 3D deep learning model to predict the diagnosis of dementia with Lewy bodies, Alzheimer’s disease, and mild cognitive impairment using brain 18F-FDG PET |
title_full_unstemmed | A 3D deep learning model to predict the diagnosis of dementia with Lewy bodies, Alzheimer’s disease, and mild cognitive impairment using brain 18F-FDG PET |
title_short | A 3D deep learning model to predict the diagnosis of dementia with Lewy bodies, Alzheimer’s disease, and mild cognitive impairment using brain 18F-FDG PET |
title_sort | 3d deep learning model to predict the diagnosis of dementia with lewy bodies, alzheimer’s disease, and mild cognitive impairment using brain 18f-fdg pet |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8803724/ https://www.ncbi.nlm.nih.gov/pubmed/34328531 http://dx.doi.org/10.1007/s00259-021-05483-0 |
work_keys_str_mv | AT etminanikobra a3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet AT solimanamira a3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet AT davidssonanette a3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet AT changjoser a3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet AT martinezsanchisbegona a3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet AT byttnerstefan a3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet AT camachovalle a3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet AT baucknehtmatteo a3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet AT stegeranroxana a3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet AT ressnermarcus a3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet AT agudelocifuentesmarc a3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet AT chincariniandrea a3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet AT brendelmatthias a3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet AT romingeraxel a3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet AT bruffaertsrose a3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet AT vandenbergherik a3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet AT krambergermilicag a3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet AT trostmaja a3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet AT nicastronicolas a3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet AT frisonigiovannib a3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet AT lemstraafinaw a3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet AT vanberckelbartnm a3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet AT pilottoandrea a3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet AT padovanialessandro a3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet AT morbellisilvia a3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet AT aarslanddag a3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet AT nobiliflavio a3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet AT garibottovalentina a3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet AT ochoafigueroamiguel a3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet AT etminanikobra 3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet AT solimanamira 3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet AT davidssonanette 3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet AT changjoser 3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet AT martinezsanchisbegona 3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet AT byttnerstefan 3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet AT camachovalle 3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet AT baucknehtmatteo 3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet AT stegeranroxana 3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet AT ressnermarcus 3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet AT agudelocifuentesmarc 3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet AT chincariniandrea 3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet AT brendelmatthias 3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet AT romingeraxel 3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet AT bruffaertsrose 3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet AT vandenbergherik 3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet AT krambergermilicag 3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet AT trostmaja 3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet AT nicastronicolas 3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet AT frisonigiovannib 3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet AT lemstraafinaw 3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet AT vanberckelbartnm 3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet AT pilottoandrea 3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet AT padovanialessandro 3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet AT morbellisilvia 3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet AT aarslanddag 3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet AT nobiliflavio 3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet AT garibottovalentina 3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet AT ochoafigueroamiguel 3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet |