Cargando…

A 3D deep learning model to predict the diagnosis of dementia with Lewy bodies, Alzheimer’s disease, and mild cognitive impairment using brain 18F-FDG PET

PURPOSE: The purpose of this study is to develop and validate a 3D deep learning model that predicts the final clinical diagnosis of Alzheimer’s disease (AD), dementia with Lewy bodies (DLB), mild cognitive impairment due to Alzheimer’s disease (MCI-AD), and cognitively normal (CN) using fluorine 18...

Descripción completa

Detalles Bibliográficos
Autores principales: Etminani, Kobra, Soliman, Amira, Davidsson, Anette, Chang, Jose R., Martínez-Sanchis, Begoña, Byttner, Stefan, Camacho, Valle, Bauckneht, Matteo, Stegeran, Roxana, Ressner, Marcus, Agudelo-Cifuentes, Marc, Chincarini, Andrea, Brendel, Matthias, Rominger, Axel, Bruffaerts, Rose, Vandenberghe, Rik, Kramberger, Milica G., Trost, Maja, Nicastro, Nicolas, Frisoni, Giovanni B., Lemstra, Afina W., van Berckel, Bart N. M., Pilotto, Andrea, Padovani, Alessandro, Morbelli, Silvia, Aarsland, Dag, Nobili, Flavio, Garibotto, Valentina, Ochoa-Figueroa, Miguel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8803724/
https://www.ncbi.nlm.nih.gov/pubmed/34328531
http://dx.doi.org/10.1007/s00259-021-05483-0
_version_ 1784642930377490432
author Etminani, Kobra
Soliman, Amira
Davidsson, Anette
Chang, Jose R.
Martínez-Sanchis, Begoña
Byttner, Stefan
Camacho, Valle
Bauckneht, Matteo
Stegeran, Roxana
Ressner, Marcus
Agudelo-Cifuentes, Marc
Chincarini, Andrea
Brendel, Matthias
Rominger, Axel
Bruffaerts, Rose
Vandenberghe, Rik
Kramberger, Milica G.
Trost, Maja
Nicastro, Nicolas
Frisoni, Giovanni B.
Lemstra, Afina W.
van Berckel, Bart N. M.
Pilotto, Andrea
Padovani, Alessandro
Morbelli, Silvia
Aarsland, Dag
Nobili, Flavio
Garibotto, Valentina
Ochoa-Figueroa, Miguel
author_facet Etminani, Kobra
Soliman, Amira
Davidsson, Anette
Chang, Jose R.
Martínez-Sanchis, Begoña
Byttner, Stefan
Camacho, Valle
Bauckneht, Matteo
Stegeran, Roxana
Ressner, Marcus
Agudelo-Cifuentes, Marc
Chincarini, Andrea
Brendel, Matthias
Rominger, Axel
Bruffaerts, Rose
Vandenberghe, Rik
Kramberger, Milica G.
Trost, Maja
Nicastro, Nicolas
Frisoni, Giovanni B.
Lemstra, Afina W.
van Berckel, Bart N. M.
Pilotto, Andrea
Padovani, Alessandro
Morbelli, Silvia
Aarsland, Dag
Nobili, Flavio
Garibotto, Valentina
Ochoa-Figueroa, Miguel
author_sort Etminani, Kobra
collection PubMed
description PURPOSE: The purpose of this study is to develop and validate a 3D deep learning model that predicts the final clinical diagnosis of Alzheimer’s disease (AD), dementia with Lewy bodies (DLB), mild cognitive impairment due to Alzheimer’s disease (MCI-AD), and cognitively normal (CN) using fluorine 18 fluorodeoxyglucose PET (18F-FDG PET) and compare model’s performance to that of multiple expert nuclear medicine physicians’ readers. MATERIALS AND METHODS: Retrospective 18F-FDG PET scans for AD, MCI-AD, and CN were collected from Alzheimer’s disease neuroimaging initiative (556 patients from 2005 to 2020), and CN and DLB cases were from European DLB Consortium (201 patients from 2005 to 2018). The introduced 3D convolutional neural network was trained using 90% of the data and externally tested using 10% as well as comparison to human readers on the same independent test set. The model’s performance was analyzed with sensitivity, specificity, precision, F1 score, receiver operating characteristic (ROC). The regional metabolic changes driving classification were visualized using uniform manifold approximation and projection (UMAP) and network attention. RESULTS: The proposed model achieved area under the ROC curve of 96.2% (95% confidence interval: 90.6–100) on predicting the final diagnosis of DLB in the independent test set, 96.4% (92.7–100) in AD, 71.4% (51.6–91.2) in MCI-AD, and 94.7% (90–99.5) in CN, which in ROC space outperformed human readers performance. The network attention depicted the posterior cingulate cortex is important for each neurodegenerative disease, and the UMAP visualization of the extracted features by the proposed model demonstrates the reality of development of the given disorders. CONCLUSION: Using only 18F-FDG PET of the brain, a 3D deep learning model could predict the final diagnosis of the most common neurodegenerative disorders which achieved a competitive performance compared to the human readers as well as their consensus.
format Online
Article
Text
id pubmed-8803724
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-88037242022-02-02 A 3D deep learning model to predict the diagnosis of dementia with Lewy bodies, Alzheimer’s disease, and mild cognitive impairment using brain 18F-FDG PET Etminani, Kobra Soliman, Amira Davidsson, Anette Chang, Jose R. Martínez-Sanchis, Begoña Byttner, Stefan Camacho, Valle Bauckneht, Matteo Stegeran, Roxana Ressner, Marcus Agudelo-Cifuentes, Marc Chincarini, Andrea Brendel, Matthias Rominger, Axel Bruffaerts, Rose Vandenberghe, Rik Kramberger, Milica G. Trost, Maja Nicastro, Nicolas Frisoni, Giovanni B. Lemstra, Afina W. van Berckel, Bart N. M. Pilotto, Andrea Padovani, Alessandro Morbelli, Silvia Aarsland, Dag Nobili, Flavio Garibotto, Valentina Ochoa-Figueroa, Miguel Eur J Nucl Med Mol Imaging Original Article PURPOSE: The purpose of this study is to develop and validate a 3D deep learning model that predicts the final clinical diagnosis of Alzheimer’s disease (AD), dementia with Lewy bodies (DLB), mild cognitive impairment due to Alzheimer’s disease (MCI-AD), and cognitively normal (CN) using fluorine 18 fluorodeoxyglucose PET (18F-FDG PET) and compare model’s performance to that of multiple expert nuclear medicine physicians’ readers. MATERIALS AND METHODS: Retrospective 18F-FDG PET scans for AD, MCI-AD, and CN were collected from Alzheimer’s disease neuroimaging initiative (556 patients from 2005 to 2020), and CN and DLB cases were from European DLB Consortium (201 patients from 2005 to 2018). The introduced 3D convolutional neural network was trained using 90% of the data and externally tested using 10% as well as comparison to human readers on the same independent test set. The model’s performance was analyzed with sensitivity, specificity, precision, F1 score, receiver operating characteristic (ROC). The regional metabolic changes driving classification were visualized using uniform manifold approximation and projection (UMAP) and network attention. RESULTS: The proposed model achieved area under the ROC curve of 96.2% (95% confidence interval: 90.6–100) on predicting the final diagnosis of DLB in the independent test set, 96.4% (92.7–100) in AD, 71.4% (51.6–91.2) in MCI-AD, and 94.7% (90–99.5) in CN, which in ROC space outperformed human readers performance. The network attention depicted the posterior cingulate cortex is important for each neurodegenerative disease, and the UMAP visualization of the extracted features by the proposed model demonstrates the reality of development of the given disorders. CONCLUSION: Using only 18F-FDG PET of the brain, a 3D deep learning model could predict the final diagnosis of the most common neurodegenerative disorders which achieved a competitive performance compared to the human readers as well as their consensus. Springer Berlin Heidelberg 2021-07-30 2022 /pmc/articles/PMC8803724/ /pubmed/34328531 http://dx.doi.org/10.1007/s00259-021-05483-0 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Original Article
Etminani, Kobra
Soliman, Amira
Davidsson, Anette
Chang, Jose R.
Martínez-Sanchis, Begoña
Byttner, Stefan
Camacho, Valle
Bauckneht, Matteo
Stegeran, Roxana
Ressner, Marcus
Agudelo-Cifuentes, Marc
Chincarini, Andrea
Brendel, Matthias
Rominger, Axel
Bruffaerts, Rose
Vandenberghe, Rik
Kramberger, Milica G.
Trost, Maja
Nicastro, Nicolas
Frisoni, Giovanni B.
Lemstra, Afina W.
van Berckel, Bart N. M.
Pilotto, Andrea
Padovani, Alessandro
Morbelli, Silvia
Aarsland, Dag
Nobili, Flavio
Garibotto, Valentina
Ochoa-Figueroa, Miguel
A 3D deep learning model to predict the diagnosis of dementia with Lewy bodies, Alzheimer’s disease, and mild cognitive impairment using brain 18F-FDG PET
title A 3D deep learning model to predict the diagnosis of dementia with Lewy bodies, Alzheimer’s disease, and mild cognitive impairment using brain 18F-FDG PET
title_full A 3D deep learning model to predict the diagnosis of dementia with Lewy bodies, Alzheimer’s disease, and mild cognitive impairment using brain 18F-FDG PET
title_fullStr A 3D deep learning model to predict the diagnosis of dementia with Lewy bodies, Alzheimer’s disease, and mild cognitive impairment using brain 18F-FDG PET
title_full_unstemmed A 3D deep learning model to predict the diagnosis of dementia with Lewy bodies, Alzheimer’s disease, and mild cognitive impairment using brain 18F-FDG PET
title_short A 3D deep learning model to predict the diagnosis of dementia with Lewy bodies, Alzheimer’s disease, and mild cognitive impairment using brain 18F-FDG PET
title_sort 3d deep learning model to predict the diagnosis of dementia with lewy bodies, alzheimer’s disease, and mild cognitive impairment using brain 18f-fdg pet
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8803724/
https://www.ncbi.nlm.nih.gov/pubmed/34328531
http://dx.doi.org/10.1007/s00259-021-05483-0
work_keys_str_mv AT etminanikobra a3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet
AT solimanamira a3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet
AT davidssonanette a3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet
AT changjoser a3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet
AT martinezsanchisbegona a3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet
AT byttnerstefan a3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet
AT camachovalle a3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet
AT baucknehtmatteo a3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet
AT stegeranroxana a3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet
AT ressnermarcus a3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet
AT agudelocifuentesmarc a3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet
AT chincariniandrea a3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet
AT brendelmatthias a3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet
AT romingeraxel a3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet
AT bruffaertsrose a3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet
AT vandenbergherik a3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet
AT krambergermilicag a3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet
AT trostmaja a3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet
AT nicastronicolas a3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet
AT frisonigiovannib a3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet
AT lemstraafinaw a3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet
AT vanberckelbartnm a3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet
AT pilottoandrea a3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet
AT padovanialessandro a3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet
AT morbellisilvia a3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet
AT aarslanddag a3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet
AT nobiliflavio a3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet
AT garibottovalentina a3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet
AT ochoafigueroamiguel a3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet
AT etminanikobra 3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet
AT solimanamira 3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet
AT davidssonanette 3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet
AT changjoser 3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet
AT martinezsanchisbegona 3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet
AT byttnerstefan 3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet
AT camachovalle 3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet
AT baucknehtmatteo 3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet
AT stegeranroxana 3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet
AT ressnermarcus 3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet
AT agudelocifuentesmarc 3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet
AT chincariniandrea 3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet
AT brendelmatthias 3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet
AT romingeraxel 3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet
AT bruffaertsrose 3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet
AT vandenbergherik 3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet
AT krambergermilicag 3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet
AT trostmaja 3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet
AT nicastronicolas 3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet
AT frisonigiovannib 3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet
AT lemstraafinaw 3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet
AT vanberckelbartnm 3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet
AT pilottoandrea 3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet
AT padovanialessandro 3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet
AT morbellisilvia 3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet
AT aarslanddag 3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet
AT nobiliflavio 3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet
AT garibottovalentina 3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet
AT ochoafigueroamiguel 3ddeeplearningmodeltopredictthediagnosisofdementiawithlewybodiesalzheimersdiseaseandmildcognitiveimpairmentusingbrain18ffdgpet