Cargando…
A Hybrid Feature Selection and Ensemble Approach to Identify Depressed Users in Online Social Media
Depression has become one of the most common mental illnesses, and the widespread use of social media provides new ideas for detecting various mental illnesses. The purpose of this study is to use machine learning technology to detect users of depressive patients based on user-shared content and pos...
Autores principales: | Liu, Jingfang, Shi, Mengshi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8803736/ https://www.ncbi.nlm.nih.gov/pubmed/35115990 http://dx.doi.org/10.3389/fpsyg.2021.802821 |
Ejemplares similares
-
Detecting Suicidal Ideation in Social Media: An Ensemble Method Based on Feature Fusion
por: Liu, Jingfang, et al.
Publicado: (2022) -
What Are the Characteristics of User Texts and Behaviors in Chinese Depression Posts?
por: Liu, Jingfang, et al.
Publicado: (2022) -
Does Usage of Online Social Media Help Users With Depressed Symptoms Improve Their Mental Health? Empirical Evidence From an Online Depression Community
por: Lu, Yingjie, et al.
Publicado: (2021) -
Online health community for change: Analysis of self-disclosure and social networks of users with depression
por: Shi, Jiayi, et al.
Publicado: (2023) -
Engaging Users on a Q&A Social Media Platform: The Influence of Disease Attributes and Message Features on Public Discussions of Depression
por: Pan, Shuya, et al.
Publicado: (2021)