Cargando…
Image enhancement of whole-body oncology [(18)F]-FDG PET scans using deep neural networks to reduce noise
PURPOSE: To enhance the image quality of oncology [(18)F]-FDG PET scans acquired in shorter times and reconstructed by faster algorithms using deep neural networks. METHODS: List-mode data from 277 [(18)F]-FDG PET/CT scans, from six centres using GE Discovery PET/CT scanners, were split into ¾-, ½-...
Autores principales: | Mehranian, Abolfazl, Wollenweber, Scott D., Walker, Matthew D., Bradley, Kevin M., Fielding, Patrick A., Su, Kuan-Hao, Johnsen, Robert, Kotasidis, Fotis, Jansen, Floris P., McGowan, Daniel R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8803788/ https://www.ncbi.nlm.nih.gov/pubmed/34318350 http://dx.doi.org/10.1007/s00259-021-05478-x |
Ejemplares similares
-
Deep learning–based time-of-flight (ToF) image enhancement of non-ToF PET scans
por: Mehranian, Abolfazl, et al.
Publicado: (2022) -
Quantitative techniques in (18)FDG PET scanning in oncology
por: Castell, F, et al.
Publicado: (2008) -
MR constrained simultaneous reconstruction of activity and attenuation maps in brain TOF-PET/MR imaging
por: Mehranian, Abolfazl, et al.
Publicado: (2014) -
A case series of FDG PET scan: hypometabolic lesions that matter in oncology
por: Chan, Tak Kwong, et al.
Publicado: (2023) -
Qualitative and Quantitative Evaluation of Blob-Based Time-of-Flight PET Image Reconstruction in Hybrid Brain PET/MR Imaging
por: Leemans, Eva L., et al.
Publicado: (2015)