Cargando…
AI-enhanced simultaneous multiparametric (18)F-FDG PET/MRI for accurate breast cancer diagnosis
PURPOSE: To assess whether a radiomics and machine learning (ML) model combining quantitative parameters and radiomics features extracted from simultaneous multiparametric (18)F-FDG PET/MRI can discriminate between benign and malignant breast lesions. METHODS: A population of 102 patients with 120 b...
Autores principales: | Romeo, V., Clauser, P., Rasul, S., Kapetas, P., Gibbs, P., Baltzer, P. A. T., Hacker, M., Woitek, R., Helbich, T. H., Pinker, K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8803815/ https://www.ncbi.nlm.nih.gov/pubmed/34374796 http://dx.doi.org/10.1007/s00259-021-05492-z |
Ejemplares similares
-
A Simultaneous Multiparametric (18)F-FDG PET/MRI Radiomics Model for the Diagnosis of Triple Negative Breast Cancer
por: Romeo, Valeria, et al.
Publicado: (2022) -
Simultaneous 18F-FDG PET/MRI Radiomics and Machine Learning Analysis of the Primary Breast Tumor for the Preoperative Prediction of Axillary Lymph Node Status in Breast Cancer
por: Romeo, Valeria, et al.
Publicado: (2023) -
Sequential [(18)F]FDG-[(18)F]FMISO PET and Multiparametric MRI at 3T for Insights into Breast Cancer Heterogeneity and Correlation with Patient Outcomes: First Clinical Experience
por: Andrzejewski, Piotr, et al.
Publicado: (2019) -
Clinical relevance of total choline (tCho) quantification in suspicious lesions on multiparametric breast MRI
por: Sodano, Claudia, et al.
Publicado: (2020) -
Virtual Touch IQ elastography reduces unnecessary breast biopsies by applying quantitative “rule-in” and “rule-out” threshold values
por: Kapetas, Panagiotis, et al.
Publicado: (2018)