Cargando…
Inferring causal relations from observational long-term carbon and water fluxes records
Land, atmosphere and climate interact constantly and at different spatial and temporal scales. In this paper we rely on causal discovery methods to infer spatial patterns of causal relations between several key variables of the carbon and water cycles: gross primary productivity, latent heat energy...
Autores principales: | Díaz, Emiliano, Adsuara, Jose E., Martínez, Álvaro Moreno, Piles, María, Camps-Valls, Gustau |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8803890/ https://www.ncbi.nlm.nih.gov/pubmed/35102174 http://dx.doi.org/10.1038/s41598-022-05377-7 |
Ejemplares similares
-
Soil and vegetation water content identify the main terrestrial ecosystem changes
por: Bueso, Diego, et al.
Publicado: (2023) -
Synergistic integration of optical and microwave satellite data for crop yield estimation
por: Mateo-Sanchis, Anna, et al.
Publicado: (2019) -
Partitioning net carbon dioxide fluxes into photosynthesis and respiration using neural networks
por: Tramontana, Gianluca, et al.
Publicado: (2020) -
A perspective on Gaussian processes for Earth observation
por: Camps-Valls, Gustau, et al.
Publicado: (2019) -
Commentary on ‘Physics-informed deep learning parameterization of ocean vertical mixing improves climate simulations’ by Zhu et al.
por: Camps-Valls, Gustau
Publicado: (2022)