Cargando…
Effect of head motion-induced artefacts on the reliability of deep learning-based whole-brain segmentation
Due to their robustness and speed, recently developed deep learning-based methods have the potential to provide a faster and hence more scalable alternative to more conventional neuroimaging analysis pipelines in terms of whole-brain segmentation based on magnetic resonance (MR) images. These method...
Autores principales: | Kemenczky, Péter, Vakli, Pál, Somogyi, Eszter, Homolya, István, Hermann, Petra, Gál, Viktor, Vidnyánszky, Zoltán |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8803940/ https://www.ncbi.nlm.nih.gov/pubmed/35102199 http://dx.doi.org/10.1038/s41598-022-05583-3 |
Ejemplares similares
-
Movement-related artefacts (MR-ART) dataset of matched motion-corrupted and clean structural MRI brain scans
por: Nárai, Ádám, et al.
Publicado: (2022) -
Transfer learning improves resting-state functional connectivity pattern analysis using convolutional neural networks
por: Vakli, Pál, et al.
Publicado: (2018) -
An empirical investigation of the benefit of increasing the temporal resolution of task-evoked fMRI data with multi-band imaging
por: Darányi, Virág, et al.
Publicado: (2021) -
The influence of anticipated monetary incentives on visual working memory performance in healthy younger and older adults
por: Manga, Annamária, et al.
Publicado: (2020) -
Investigation of the relationship between visual feature binding in short- and long-term memory in healthy aging
por: Manga, Annamária, et al.
Publicado: (2021)