Cargando…

New Keys to Early Diagnosis: Muscle Echogenicity, Nerve Ultrasound Patterns, Electrodiagnostic, and Clinical Parameters in 150 Patients with Hereditary Polyneuropathies

Hereditary neuropathies are of variable genotype and phenotype. With upcoming therapies, there is urgent need for early disease recognition and outcome measures. High-resolution nerve and muscle ultrasound is a dynamic, non-invasive, well-established tool in the field of inflammatory and traumatic n...

Descripción completa

Detalles Bibliográficos
Autores principales: Winter, Natalie, Vittore, Debora, Gess, Burkhard, Schulz, Jörg B., Grimm, Alexander, Dohrn, Maike F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8804010/
https://www.ncbi.nlm.nih.gov/pubmed/34708324
http://dx.doi.org/10.1007/s13311-021-01141-3
Descripción
Sumario:Hereditary neuropathies are of variable genotype and phenotype. With upcoming therapies, there is urgent need for early disease recognition and outcome measures. High-resolution nerve and muscle ultrasound is a dynamic, non-invasive, well-established tool in the field of inflammatory and traumatic neuropathies. In this study, we defined nerve and muscle ultrasound parameters as recognition and progression markers in 150 patients with genetically confirmed hereditary neuropathies, including Charcot-Marie-Tooth (CMT) disease (CMT1A, n = 55; other CMT1/4, n = 28; axonal CMT, n = 15; CMTX, n = 15), hereditary neuropathy with liability to pressure palsies (HNPP, n = 16), hereditary transthyretin-amyloidosis (ATTRv, n = 14), and Fabry’s disease (n = 7). The CMT1A, followed by the CMT1/4 group, had the most homogeneous enlargement of the nerve cross-sectional areas (CSA) in the ultrasound pattern sum (UPSS) and homogeneity score. Entrapment scores were highest in HNPP, ATTRv amyloidosis, and Fabry’s disease patients. In demyelinating neuropathies, the CSA correlated inversely with nerve conduction studies. The muscle echo intensity was significantly highest in the clinically most affected muscles, which was independent from the underlying disease cause and correlated with muscle strength and disease duration. Further correlations were seen with combined clinical (CMTES-2) and electrophysiological (CMTNS-2) scores of disease severity. We conclude that nerve ultrasound is a helpful tool to distinguish different types of hereditary neuropathies by pattern recognition, whereas muscle ultrasound is an objective parameter for disease severity. The implementation of neuromuscular ultrasound might enrich diagnostic procedures both in clinical routines and research. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13311-021-01141-3.