Cargando…
Iterative analytic extension in tomographic imaging
If a spatial-domain function has a finite support, its Fourier transform is an entire function. The Taylor series expansion of an entire function converges at every finite point in the complex plane. The analytic continuation theory suggests that a finite-sized object can be uniquely determined by i...
Autor principal: | Zeng, Gengsheng L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Singapore
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8804128/ https://www.ncbi.nlm.nih.gov/pubmed/35102439 http://dx.doi.org/10.1186/s42492-021-00099-5 |
Ejemplares similares
-
Iterative versus non-iterative image reconstruction methods for sparse magnetic resonance imaging
por: Zeng, Gengsheng L, et al.
Publicado: (2020) -
Projection-domain iteration to estimate unreliable measurements
por: Zeng, Gengsheng L.
Publicado: (2020) -
Non-iterative image reconstruction from sparse magnetic resonance imaging radial data without priors
por: Zeng, Gengsheng L., et al.
Publicado: (2020) -
A projection-domain iterative algorithm for metal artifact reduction by minimizing the total-variation norm and the negative-pixel energy
por: Zeng, Gengsheng L.
Publicado: (2022) -
Extension of emission expectation maximization lookalike algorithms to Bayesian algorithms
por: Zeng, Gengsheng L., et al.
Publicado: (2019)