Cargando…

Leveraging TOPMed imputation server and constructing a cohort-specific imputation reference panel to enhance genotype imputation among cystic fibrosis patients

Cystic fibrosis (CF) is a severe genetic disorder that can cause multiple comorbidities affecting the lungs, the pancreas, the luminal digestive system and beyond. In our previous genome-wide association studies (GWAS), we genotyped approximately 8,000 CF samples using a mixture of different genotyp...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Quan, Liu, Weifang, Rosen, Jonathan D., Huang, Le, Pace, Rhonda G., Dang, Hong, Gallins, Paul J., Blue, Elizabeth E., Ling, Hua, Corvol, Harriet, Strug, Lisa J., Bamshad, Michael J., Gibson, Ronald L., Pugh, Elizabeth W., Blackman, Scott M., Cutting, Garry R., O'Neal, Wanda K., Zhou, Yi-Hui, Wright, Fred A., Knowles, Michael R., Wen, Jia, Li, Yun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8804187/
https://www.ncbi.nlm.nih.gov/pubmed/35128485
http://dx.doi.org/10.1016/j.xhgg.2022.100090
_version_ 1784643019262132224
author Sun, Quan
Liu, Weifang
Rosen, Jonathan D.
Huang, Le
Pace, Rhonda G.
Dang, Hong
Gallins, Paul J.
Blue, Elizabeth E.
Ling, Hua
Corvol, Harriet
Strug, Lisa J.
Bamshad, Michael J.
Gibson, Ronald L.
Pugh, Elizabeth W.
Blackman, Scott M.
Cutting, Garry R.
O'Neal, Wanda K.
Zhou, Yi-Hui
Wright, Fred A.
Knowles, Michael R.
Wen, Jia
Li, Yun
author_facet Sun, Quan
Liu, Weifang
Rosen, Jonathan D.
Huang, Le
Pace, Rhonda G.
Dang, Hong
Gallins, Paul J.
Blue, Elizabeth E.
Ling, Hua
Corvol, Harriet
Strug, Lisa J.
Bamshad, Michael J.
Gibson, Ronald L.
Pugh, Elizabeth W.
Blackman, Scott M.
Cutting, Garry R.
O'Neal, Wanda K.
Zhou, Yi-Hui
Wright, Fred A.
Knowles, Michael R.
Wen, Jia
Li, Yun
author_sort Sun, Quan
collection PubMed
description Cystic fibrosis (CF) is a severe genetic disorder that can cause multiple comorbidities affecting the lungs, the pancreas, the luminal digestive system and beyond. In our previous genome-wide association studies (GWAS), we genotyped approximately 8,000 CF samples using a mixture of different genotyping platforms. More recently, the Cystic Fibrosis Genome Project (CFGP) performed deep (approximately 30×) whole genome sequencing (WGS) of 5,095 samples to better understand the genetic mechanisms underlying clinical heterogeneity among patients with CF. For mixtures of GWAS array and WGS data, genotype imputation has proven effective in increasing effective sample size. Therefore, we first performed imputation for the approximately 8,000 CF samples with GWAS array genotype using the Trans-Omics for Precision Medicine (TOPMed) freeze 8 reference panel. Our results demonstrate that TOPMed can provide high-quality imputation for patients with CF, boosting genomic coverage from approximately 0.3–4.2 million genotyped markers to approximately 11–43 million well-imputed markers, and significantly improving polygenic risk score (PRS) prediction accuracy. Furthermore, we built a CF-specific CFGP reference panel based on WGS data of patients with CF. We demonstrate that despite having approximately 3% the sample size of TOPMed, our CFGP reference panel can still outperform TOPMed when imputing some CF disease-causing variants, likely owing to allele and haplotype differences between patients with CF and general populations. We anticipate our imputed data for 4,656 samples without WGS data will benefit our subsequent genetic association studies, and the CFGP reference panel built from CF WGS samples will benefit other investigators studying CF.
format Online
Article
Text
id pubmed-8804187
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-88041872022-02-04 Leveraging TOPMed imputation server and constructing a cohort-specific imputation reference panel to enhance genotype imputation among cystic fibrosis patients Sun, Quan Liu, Weifang Rosen, Jonathan D. Huang, Le Pace, Rhonda G. Dang, Hong Gallins, Paul J. Blue, Elizabeth E. Ling, Hua Corvol, Harriet Strug, Lisa J. Bamshad, Michael J. Gibson, Ronald L. Pugh, Elizabeth W. Blackman, Scott M. Cutting, Garry R. O'Neal, Wanda K. Zhou, Yi-Hui Wright, Fred A. Knowles, Michael R. Wen, Jia Li, Yun HGG Adv Article Cystic fibrosis (CF) is a severe genetic disorder that can cause multiple comorbidities affecting the lungs, the pancreas, the luminal digestive system and beyond. In our previous genome-wide association studies (GWAS), we genotyped approximately 8,000 CF samples using a mixture of different genotyping platforms. More recently, the Cystic Fibrosis Genome Project (CFGP) performed deep (approximately 30×) whole genome sequencing (WGS) of 5,095 samples to better understand the genetic mechanisms underlying clinical heterogeneity among patients with CF. For mixtures of GWAS array and WGS data, genotype imputation has proven effective in increasing effective sample size. Therefore, we first performed imputation for the approximately 8,000 CF samples with GWAS array genotype using the Trans-Omics for Precision Medicine (TOPMed) freeze 8 reference panel. Our results demonstrate that TOPMed can provide high-quality imputation for patients with CF, boosting genomic coverage from approximately 0.3–4.2 million genotyped markers to approximately 11–43 million well-imputed markers, and significantly improving polygenic risk score (PRS) prediction accuracy. Furthermore, we built a CF-specific CFGP reference panel based on WGS data of patients with CF. We demonstrate that despite having approximately 3% the sample size of TOPMed, our CFGP reference panel can still outperform TOPMed when imputing some CF disease-causing variants, likely owing to allele and haplotype differences between patients with CF and general populations. We anticipate our imputed data for 4,656 samples without WGS data will benefit our subsequent genetic association studies, and the CFGP reference panel built from CF WGS samples will benefit other investigators studying CF. Elsevier 2022-01-11 /pmc/articles/PMC8804187/ /pubmed/35128485 http://dx.doi.org/10.1016/j.xhgg.2022.100090 Text en © 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Sun, Quan
Liu, Weifang
Rosen, Jonathan D.
Huang, Le
Pace, Rhonda G.
Dang, Hong
Gallins, Paul J.
Blue, Elizabeth E.
Ling, Hua
Corvol, Harriet
Strug, Lisa J.
Bamshad, Michael J.
Gibson, Ronald L.
Pugh, Elizabeth W.
Blackman, Scott M.
Cutting, Garry R.
O'Neal, Wanda K.
Zhou, Yi-Hui
Wright, Fred A.
Knowles, Michael R.
Wen, Jia
Li, Yun
Leveraging TOPMed imputation server and constructing a cohort-specific imputation reference panel to enhance genotype imputation among cystic fibrosis patients
title Leveraging TOPMed imputation server and constructing a cohort-specific imputation reference panel to enhance genotype imputation among cystic fibrosis patients
title_full Leveraging TOPMed imputation server and constructing a cohort-specific imputation reference panel to enhance genotype imputation among cystic fibrosis patients
title_fullStr Leveraging TOPMed imputation server and constructing a cohort-specific imputation reference panel to enhance genotype imputation among cystic fibrosis patients
title_full_unstemmed Leveraging TOPMed imputation server and constructing a cohort-specific imputation reference panel to enhance genotype imputation among cystic fibrosis patients
title_short Leveraging TOPMed imputation server and constructing a cohort-specific imputation reference panel to enhance genotype imputation among cystic fibrosis patients
title_sort leveraging topmed imputation server and constructing a cohort-specific imputation reference panel to enhance genotype imputation among cystic fibrosis patients
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8804187/
https://www.ncbi.nlm.nih.gov/pubmed/35128485
http://dx.doi.org/10.1016/j.xhgg.2022.100090
work_keys_str_mv AT sunquan leveragingtopmedimputationserverandconstructingacohortspecificimputationreferencepaneltoenhancegenotypeimputationamongcysticfibrosispatients
AT liuweifang leveragingtopmedimputationserverandconstructingacohortspecificimputationreferencepaneltoenhancegenotypeimputationamongcysticfibrosispatients
AT rosenjonathand leveragingtopmedimputationserverandconstructingacohortspecificimputationreferencepaneltoenhancegenotypeimputationamongcysticfibrosispatients
AT huangle leveragingtopmedimputationserverandconstructingacohortspecificimputationreferencepaneltoenhancegenotypeimputationamongcysticfibrosispatients
AT pacerhondag leveragingtopmedimputationserverandconstructingacohortspecificimputationreferencepaneltoenhancegenotypeimputationamongcysticfibrosispatients
AT danghong leveragingtopmedimputationserverandconstructingacohortspecificimputationreferencepaneltoenhancegenotypeimputationamongcysticfibrosispatients
AT gallinspaulj leveragingtopmedimputationserverandconstructingacohortspecificimputationreferencepaneltoenhancegenotypeimputationamongcysticfibrosispatients
AT blueelizabethe leveragingtopmedimputationserverandconstructingacohortspecificimputationreferencepaneltoenhancegenotypeimputationamongcysticfibrosispatients
AT linghua leveragingtopmedimputationserverandconstructingacohortspecificimputationreferencepaneltoenhancegenotypeimputationamongcysticfibrosispatients
AT corvolharriet leveragingtopmedimputationserverandconstructingacohortspecificimputationreferencepaneltoenhancegenotypeimputationamongcysticfibrosispatients
AT struglisaj leveragingtopmedimputationserverandconstructingacohortspecificimputationreferencepaneltoenhancegenotypeimputationamongcysticfibrosispatients
AT bamshadmichaelj leveragingtopmedimputationserverandconstructingacohortspecificimputationreferencepaneltoenhancegenotypeimputationamongcysticfibrosispatients
AT gibsonronaldl leveragingtopmedimputationserverandconstructingacohortspecificimputationreferencepaneltoenhancegenotypeimputationamongcysticfibrosispatients
AT pughelizabethw leveragingtopmedimputationserverandconstructingacohortspecificimputationreferencepaneltoenhancegenotypeimputationamongcysticfibrosispatients
AT blackmanscottm leveragingtopmedimputationserverandconstructingacohortspecificimputationreferencepaneltoenhancegenotypeimputationamongcysticfibrosispatients
AT cuttinggarryr leveragingtopmedimputationserverandconstructingacohortspecificimputationreferencepaneltoenhancegenotypeimputationamongcysticfibrosispatients
AT onealwandak leveragingtopmedimputationserverandconstructingacohortspecificimputationreferencepaneltoenhancegenotypeimputationamongcysticfibrosispatients
AT zhouyihui leveragingtopmedimputationserverandconstructingacohortspecificimputationreferencepaneltoenhancegenotypeimputationamongcysticfibrosispatients
AT wrightfreda leveragingtopmedimputationserverandconstructingacohortspecificimputationreferencepaneltoenhancegenotypeimputationamongcysticfibrosispatients
AT knowlesmichaelr leveragingtopmedimputationserverandconstructingacohortspecificimputationreferencepaneltoenhancegenotypeimputationamongcysticfibrosispatients
AT wenjia leveragingtopmedimputationserverandconstructingacohortspecificimputationreferencepaneltoenhancegenotypeimputationamongcysticfibrosispatients
AT liyun leveragingtopmedimputationserverandconstructingacohortspecificimputationreferencepaneltoenhancegenotypeimputationamongcysticfibrosispatients
AT leveragingtopmedimputationserverandconstructingacohortspecificimputationreferencepaneltoenhancegenotypeimputationamongcysticfibrosispatients