Cargando…
A Risk-Stratification Machine Learning Framework for the Prediction of Coronary Artery Disease Severity: Insights From the GESS Trial
Our study aims to develop a data-driven framework utilizing heterogenous electronic medical and clinical records and advanced Machine Learning (ML) approaches for: (i) the identification of critical risk factors affecting the complexity of Coronary Artery Disease (CAD), as assessed via the SYNTAX sc...
Autores principales: | Mittas, Nikolaos, Chatzopoulou, Fani, Kyritsis, Konstantinos A., Papagiannopoulos, Christos I., Theodoroula, Nikoleta F., Papazoglou, Andreas S., Karagiannidis, Efstratios, Sofidis, Georgios, Moysidis, Dimitrios V., Stalikas, Nikolaos, Papa, Anna, Chatzidimitriou, Dimitrios, Sianos, Georgios, Angelis, Lefteris, Vizirianakis, Ioannis S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8804295/ https://www.ncbi.nlm.nih.gov/pubmed/35118145 http://dx.doi.org/10.3389/fcvm.2021.812182 |
Ejemplares similares
-
The GEnetic Syntax Score: a genetic risk assessment implementation tool grading the complexity of coronary artery disease—rationale and design of the GESS study
por: Vizirianakis, Ioannis S., et al.
Publicado: (2021) -
Correction to: The GEnetic Syntax Score: a genetic risk assessment implementation tool grading the complexity of coronary artery disease—rationale and design of the GESS study
por: Vizirianakis, Ioannis S., et al.
Publicado: (2021) -
Dissecting miRNA–Gene Networks to Map Clinical Utility Roads of Pharmacogenomics-Guided Therapeutic Decisions in Cardiovascular Precision Medicine
por: Chatzopoulou, Fani, et al.
Publicado: (2022) -
Single Nucleotide Polymorphisms’ Causal Structure Robustness within Coronary Artery Disease Patients
por: Ganopoulou, Maria, et al.
Publicado: (2023) -
A Case of Balloon Rupture During Coronary Angioplasty: Slow Flow Requiring Swift Action
por: Sofidis, Georgios, et al.
Publicado: (2020)