Cargando…
Pterocarpus santalinus Selectively Inhibits a Subset of Pro-Inflammatory Genes in Interleukin-1 Stimulated Endothelial Cells
Based on the traditional use and scientific reports on the anti-inflammatory potential of red sandalwood, i.e., the heartwood of Pterocarpus santalinus L., we investigated its activity in a model of IL-1 stimulated endothelial cells. Endothelial cells were stimulated with IL-1 with or without prior...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8804362/ https://www.ncbi.nlm.nih.gov/pubmed/35115943 http://dx.doi.org/10.3389/fphar.2021.802153 |
_version_ | 1784643060608532480 |
---|---|
author | Natalia, Priscilla Zwirchmayr, Julia Rudžionytė, Ieva Pulsinger, Alexandra Breuss, Johannes M. Uhrin, Pavel Rollinger, Judith M. de Martin, Rainer |
author_facet | Natalia, Priscilla Zwirchmayr, Julia Rudžionytė, Ieva Pulsinger, Alexandra Breuss, Johannes M. Uhrin, Pavel Rollinger, Judith M. de Martin, Rainer |
author_sort | Natalia, Priscilla |
collection | PubMed |
description | Based on the traditional use and scientific reports on the anti-inflammatory potential of red sandalwood, i.e., the heartwood of Pterocarpus santalinus L., we investigated its activity in a model of IL-1 stimulated endothelial cells. Endothelial cells were stimulated with IL-1 with or without prior incubation with a defined sandalwoodextract (PS), and analyzed for the expression of selected pro-inflammatory genes. The activity of NF-κB, a transcription factor of central importance for inflammatory gene expression was assessed by reporter gene analysis, Western blotting of IκBα, and nuclear translocation studies. In addition, microarray studies were performed followed by verification of selected genes by qPCR and supplemented by bioinformatics analysis. Our results show that PS is able to suppress the induction of E-selectin and VCAM-1, molecules that mediate key steps in the adhesion of leukocytes to the endothelium. It also suppressed the activity of an NF-κB reporter, IκBα phosphorylation and degradation, and the nuclear translocation of NF-κB RelA. In contrast, it stimulated JNK phosphorylation indicating the activation of the JNK signaling pathway. Gene expression profiling revealed that PS inhibits only a specific subset of IL-1 induced genes, while others remain unaffected. Most strongly suppressed genes were the signal transducer TRAF1 and the chemokine CX3CL1, whereas IL-8 was an example of a non-affected gene. Notably, PS also stimulated the expression of certain genes, including ones with negative regulatory function, e.g., members of the NR4A family, the mRNA destabilizing protein TTP as well as the transcription factors ATF3 and BHLHB40. These results provide mechanistic insight into the anti-inflammatory activity of PS, and suggest that it acts through the interplay of negative and positive regulators to achieve a differential inhibition of inflammatory gene expression. |
format | Online Article Text |
id | pubmed-8804362 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-88043622022-02-02 Pterocarpus santalinus Selectively Inhibits a Subset of Pro-Inflammatory Genes in Interleukin-1 Stimulated Endothelial Cells Natalia, Priscilla Zwirchmayr, Julia Rudžionytė, Ieva Pulsinger, Alexandra Breuss, Johannes M. Uhrin, Pavel Rollinger, Judith M. de Martin, Rainer Front Pharmacol Pharmacology Based on the traditional use and scientific reports on the anti-inflammatory potential of red sandalwood, i.e., the heartwood of Pterocarpus santalinus L., we investigated its activity in a model of IL-1 stimulated endothelial cells. Endothelial cells were stimulated with IL-1 with or without prior incubation with a defined sandalwoodextract (PS), and analyzed for the expression of selected pro-inflammatory genes. The activity of NF-κB, a transcription factor of central importance for inflammatory gene expression was assessed by reporter gene analysis, Western blotting of IκBα, and nuclear translocation studies. In addition, microarray studies were performed followed by verification of selected genes by qPCR and supplemented by bioinformatics analysis. Our results show that PS is able to suppress the induction of E-selectin and VCAM-1, molecules that mediate key steps in the adhesion of leukocytes to the endothelium. It also suppressed the activity of an NF-κB reporter, IκBα phosphorylation and degradation, and the nuclear translocation of NF-κB RelA. In contrast, it stimulated JNK phosphorylation indicating the activation of the JNK signaling pathway. Gene expression profiling revealed that PS inhibits only a specific subset of IL-1 induced genes, while others remain unaffected. Most strongly suppressed genes were the signal transducer TRAF1 and the chemokine CX3CL1, whereas IL-8 was an example of a non-affected gene. Notably, PS also stimulated the expression of certain genes, including ones with negative regulatory function, e.g., members of the NR4A family, the mRNA destabilizing protein TTP as well as the transcription factors ATF3 and BHLHB40. These results provide mechanistic insight into the anti-inflammatory activity of PS, and suggest that it acts through the interplay of negative and positive regulators to achieve a differential inhibition of inflammatory gene expression. Frontiers Media S.A. 2022-01-18 /pmc/articles/PMC8804362/ /pubmed/35115943 http://dx.doi.org/10.3389/fphar.2021.802153 Text en Copyright © 2022 Natalia, Zwirchmayr, Rudžionytė, Pulsinger, Breuss, Uhrin, Rollinger and de Martin. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Pharmacology Natalia, Priscilla Zwirchmayr, Julia Rudžionytė, Ieva Pulsinger, Alexandra Breuss, Johannes M. Uhrin, Pavel Rollinger, Judith M. de Martin, Rainer Pterocarpus santalinus Selectively Inhibits a Subset of Pro-Inflammatory Genes in Interleukin-1 Stimulated Endothelial Cells |
title |
Pterocarpus santalinus Selectively Inhibits a Subset of Pro-Inflammatory Genes in Interleukin-1 Stimulated Endothelial Cells |
title_full |
Pterocarpus santalinus Selectively Inhibits a Subset of Pro-Inflammatory Genes in Interleukin-1 Stimulated Endothelial Cells |
title_fullStr |
Pterocarpus santalinus Selectively Inhibits a Subset of Pro-Inflammatory Genes in Interleukin-1 Stimulated Endothelial Cells |
title_full_unstemmed |
Pterocarpus santalinus Selectively Inhibits a Subset of Pro-Inflammatory Genes in Interleukin-1 Stimulated Endothelial Cells |
title_short |
Pterocarpus santalinus Selectively Inhibits a Subset of Pro-Inflammatory Genes in Interleukin-1 Stimulated Endothelial Cells |
title_sort | pterocarpus santalinus selectively inhibits a subset of pro-inflammatory genes in interleukin-1 stimulated endothelial cells |
topic | Pharmacology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8804362/ https://www.ncbi.nlm.nih.gov/pubmed/35115943 http://dx.doi.org/10.3389/fphar.2021.802153 |
work_keys_str_mv | AT nataliapriscilla pterocarpussantalinusselectivelyinhibitsasubsetofproinflammatorygenesininterleukin1stimulatedendothelialcells AT zwirchmayrjulia pterocarpussantalinusselectivelyinhibitsasubsetofproinflammatorygenesininterleukin1stimulatedendothelialcells AT rudzionyteieva pterocarpussantalinusselectivelyinhibitsasubsetofproinflammatorygenesininterleukin1stimulatedendothelialcells AT pulsingeralexandra pterocarpussantalinusselectivelyinhibitsasubsetofproinflammatorygenesininterleukin1stimulatedendothelialcells AT breussjohannesm pterocarpussantalinusselectivelyinhibitsasubsetofproinflammatorygenesininterleukin1stimulatedendothelialcells AT uhrinpavel pterocarpussantalinusselectivelyinhibitsasubsetofproinflammatorygenesininterleukin1stimulatedendothelialcells AT rollingerjudithm pterocarpussantalinusselectivelyinhibitsasubsetofproinflammatorygenesininterleukin1stimulatedendothelialcells AT demartinrainer pterocarpussantalinusselectivelyinhibitsasubsetofproinflammatorygenesininterleukin1stimulatedendothelialcells |