Cargando…

Automating Agroecology: How to Design a Farming Robot Without a Monocultural Mindset?

Robots are widely expected—and pushed—to transform open-field agriculture, but these visions remain wedded to optimizing monocultural farming systems. Meanwhile there is little pull for automation from ecology-based, diversified farming realms. Noting this gap, we here explore the potential for robo...

Descripción completa

Detalles Bibliográficos
Autores principales: Ditzler, Lenora, Driessen, Clemens
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Netherlands 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8804368/
https://www.ncbi.nlm.nih.gov/pubmed/35125902
http://dx.doi.org/10.1007/s10806-021-09876-x
Descripción
Sumario:Robots are widely expected—and pushed—to transform open-field agriculture, but these visions remain wedded to optimizing monocultural farming systems. Meanwhile there is little pull for automation from ecology-based, diversified farming realms. Noting this gap, we here explore the potential for robots to foster an agroecological approach to crop production. The research was situated in The Netherlands within the case of pixel cropping, a nascent farming method in which multiple food and service crops are planted together in diverse assemblages employing agroecological practices such as intercropping and biological pest control. Around this case we engaged with a variety of specialists in discussion groups, workshops, and design challenges to explore the potential of field robots to meet the multifaceted demands of highly diverse agroecological cropping systems. This generated a spectrum of imaginations for how automated tools might—or might not—be appropriately used, ranging from fully automated visions, to collaborative scenarios, to fully analogue prototypes. We found that automating agroecological cropping systems requires finding ways to imbue the ethos of agroecology into designed tools, thereby seeking to overcome tensions between production aims and other forms of social and ecological care. We conclude that a rethinking of automation is necessary for agroecological contexts: not as a blueprint for replacing humans, but making room for analogue and hybrid forms of agricultural work. These findings highlight a need for design processes which include a diversity of actors, involve iterative design cycles, and incorporate feedback between designers, practitioners, tools, and cropping systems.