Cargando…
Sulfated non-anticoagulant heparin derivative modifies intracellular hemoglobin, inhibits cell sickling in vitro, and prolongs survival of sickle cell mice under hypoxia
Sickle cell disease (SCD) is an autosomal recessive genetic disease caused by a single point mutation, resulting in abnormal sickle hemoglobin (HbS). During hypoxia or dehydration, HbS polymerizes to form insoluble aggregates and induces sickling of red blood cells, which increases the adhesiveness...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Fondazione Ferrata Storti
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8804574/ https://www.ncbi.nlm.nih.gov/pubmed/33567814 http://dx.doi.org/10.3324/haematol.2020.272393 |
_version_ | 1784643104442155008 |
---|---|
author | Abdulmalik, Osheiza Darwish, Noureldien H. E. Muralidharan-Chari, Vandhana Taleb, Maii Abu Mousa, Shaker A. |
author_facet | Abdulmalik, Osheiza Darwish, Noureldien H. E. Muralidharan-Chari, Vandhana Taleb, Maii Abu Mousa, Shaker A. |
author_sort | Abdulmalik, Osheiza |
collection | PubMed |
description | Sickle cell disease (SCD) is an autosomal recessive genetic disease caused by a single point mutation, resulting in abnormal sickle hemoglobin (HbS). During hypoxia or dehydration, HbS polymerizes to form insoluble aggregates and induces sickling of red blood cells, which increases the adhesiveness of the cells, thereby altering the rheological properties of the blood, and triggers inflammatory responses, leading to hemolysis and vaso-occlusive crises. Unfractionated heparin and low-molecular weight heparins have been suggested as treatments to relieve coagulation complications in SCD. However, they are associated with bleeding complications after repeated dosing. An alternative sulfated non-anticoagulant heparin derivative (S-NACH) was previously reported to have no to low systemic anticoagulant activity and no bleeding side effects, and it interfered with P-selectin-dependent binding of sickle cells to endothelial cells, with concomitant decrease in the levels of adhesion biomarkers in SCD mice. S-NACH has been further engineered and structurally enhanced to bind with and modify HbS to inhibit sickling directly, thus employing a multimodal approach. Here, we show that S-NACH can: (i) directly engage in Schiff-base reactions with HbS to decrease red blood cell sickling under both normoxia and hypoxia in vitro, (ii) prolong the survival of SCD mice under hypoxia, and (iii) regulate the altered steady state levels of pro- and anti-inflammatory cytokines. Thus, our proof-of-concept, in vitro and in vivo preclinical studies demonstrate that the multimodal S-NACH is a highly promising candidate for development into an improved and optimized alternative to low-molecular weight heparins for the treatment of patients with SCD. |
format | Online Article Text |
id | pubmed-8804574 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Fondazione Ferrata Storti |
record_format | MEDLINE/PubMed |
spelling | pubmed-88045742022-02-23 Sulfated non-anticoagulant heparin derivative modifies intracellular hemoglobin, inhibits cell sickling in vitro, and prolongs survival of sickle cell mice under hypoxia Abdulmalik, Osheiza Darwish, Noureldien H. E. Muralidharan-Chari, Vandhana Taleb, Maii Abu Mousa, Shaker A. Haematologica Article Sickle cell disease (SCD) is an autosomal recessive genetic disease caused by a single point mutation, resulting in abnormal sickle hemoglobin (HbS). During hypoxia or dehydration, HbS polymerizes to form insoluble aggregates and induces sickling of red blood cells, which increases the adhesiveness of the cells, thereby altering the rheological properties of the blood, and triggers inflammatory responses, leading to hemolysis and vaso-occlusive crises. Unfractionated heparin and low-molecular weight heparins have been suggested as treatments to relieve coagulation complications in SCD. However, they are associated with bleeding complications after repeated dosing. An alternative sulfated non-anticoagulant heparin derivative (S-NACH) was previously reported to have no to low systemic anticoagulant activity and no bleeding side effects, and it interfered with P-selectin-dependent binding of sickle cells to endothelial cells, with concomitant decrease in the levels of adhesion biomarkers in SCD mice. S-NACH has been further engineered and structurally enhanced to bind with and modify HbS to inhibit sickling directly, thus employing a multimodal approach. Here, we show that S-NACH can: (i) directly engage in Schiff-base reactions with HbS to decrease red blood cell sickling under both normoxia and hypoxia in vitro, (ii) prolong the survival of SCD mice under hypoxia, and (iii) regulate the altered steady state levels of pro- and anti-inflammatory cytokines. Thus, our proof-of-concept, in vitro and in vivo preclinical studies demonstrate that the multimodal S-NACH is a highly promising candidate for development into an improved and optimized alternative to low-molecular weight heparins for the treatment of patients with SCD. Fondazione Ferrata Storti 2021-02-11 /pmc/articles/PMC8804574/ /pubmed/33567814 http://dx.doi.org/10.3324/haematol.2020.272393 Text en Copyright© 2022 Ferrata Storti Foundation https://creativecommons.org/licenses/by-nc/4.0/This article is distributed under the terms of the Creative Commons Attribution Noncommercial License (by-nc 4.0) which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. |
spellingShingle | Article Abdulmalik, Osheiza Darwish, Noureldien H. E. Muralidharan-Chari, Vandhana Taleb, Maii Abu Mousa, Shaker A. Sulfated non-anticoagulant heparin derivative modifies intracellular hemoglobin, inhibits cell sickling in vitro, and prolongs survival of sickle cell mice under hypoxia |
title | Sulfated non-anticoagulant heparin derivative modifies intracellular hemoglobin, inhibits cell sickling in vitro, and prolongs survival of sickle cell mice under hypoxia |
title_full | Sulfated non-anticoagulant heparin derivative modifies intracellular hemoglobin, inhibits cell sickling in vitro, and prolongs survival of sickle cell mice under hypoxia |
title_fullStr | Sulfated non-anticoagulant heparin derivative modifies intracellular hemoglobin, inhibits cell sickling in vitro, and prolongs survival of sickle cell mice under hypoxia |
title_full_unstemmed | Sulfated non-anticoagulant heparin derivative modifies intracellular hemoglobin, inhibits cell sickling in vitro, and prolongs survival of sickle cell mice under hypoxia |
title_short | Sulfated non-anticoagulant heparin derivative modifies intracellular hemoglobin, inhibits cell sickling in vitro, and prolongs survival of sickle cell mice under hypoxia |
title_sort | sulfated non-anticoagulant heparin derivative modifies intracellular hemoglobin, inhibits cell sickling in vitro, and prolongs survival of sickle cell mice under hypoxia |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8804574/ https://www.ncbi.nlm.nih.gov/pubmed/33567814 http://dx.doi.org/10.3324/haematol.2020.272393 |
work_keys_str_mv | AT abdulmalikosheiza sulfatednonanticoagulantheparinderivativemodifiesintracellularhemoglobininhibitscellsicklinginvitroandprolongssurvivalofsicklecellmiceunderhypoxia AT darwishnoureldienhe sulfatednonanticoagulantheparinderivativemodifiesintracellularhemoglobininhibitscellsicklinginvitroandprolongssurvivalofsicklecellmiceunderhypoxia AT muralidharancharivandhana sulfatednonanticoagulantheparinderivativemodifiesintracellularhemoglobininhibitscellsicklinginvitroandprolongssurvivalofsicklecellmiceunderhypoxia AT talebmaiiabu sulfatednonanticoagulantheparinderivativemodifiesintracellularhemoglobininhibitscellsicklinginvitroandprolongssurvivalofsicklecellmiceunderhypoxia AT mousashakera sulfatednonanticoagulantheparinderivativemodifiesintracellularhemoglobininhibitscellsicklinginvitroandprolongssurvivalofsicklecellmiceunderhypoxia |