Cargando…
Electroencephalography-Based Brain–Computer Interface Motor Imagery Classification
BACKGROUND: Advances in the medical applications of brain–computer interface, like the motor imagery systems, are highly contributed to making the disabled live better. One of the challenges with such systems is to achieve high classification accuracy. METHODS: A highly accurate classification algor...
Autores principales: | Mohammadi, Ehsan, Daneshmand, Parisa Ghaderi, Khorzooghi, Seyyed Mohammad Sadegh Moosavi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer - Medknow
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8804596/ https://www.ncbi.nlm.nih.gov/pubmed/35265464 http://dx.doi.org/10.4103/jmss.JMSS_74_20 |
Ejemplares similares
-
A Comprehensive Review on Critical Issues and Possible Solutions of Motor Imagery Based Electroencephalography Brain-Computer Interface
por: Singh, Amardeep, et al.
Publicado: (2021) -
Classification of Motor Imagery Electroencephalography Signals Based on Image Processing Method
por: Chen, Zhongye, et al.
Publicado: (2021) -
The Ensemble Machine Learning-Based Classification of Motor Imagery Tasks in Brain-Computer Interface
por: Subasi, Abdulhamit, et al.
Publicado: (2021) -
Classification of Four-Class Motor Imagery Employing Single-Channel Electroencephalography
por: Ge, Sheng, et al.
Publicado: (2014) -
Transfer Kernel Common Spatial Patterns for Motor Imagery Brain-Computer Interface Classification
por: Dai, Mengxi, et al.
Publicado: (2018)