Cargando…
The Euler characteristic as a basis for teaching topology concepts to crystallographers
The simple Euler polyhedral formula, expressed as an alternating count of the bounding faces, edges and vertices of any polyhedron, V − E + F = 2, is a fundamental concept in several branches of mathematics. Obviously, it is important in geometry, but it is also well known in topology, where a simil...
Autores principales: | Naskręcki, Bartosz, Jaskolski, Mariusz, Dauter, Zbigniew |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8805160/ https://www.ncbi.nlm.nih.gov/pubmed/35145361 http://dx.doi.org/10.1107/S160057672101205X |
Ejemplares similares
-
A topological proof of the modified Euler characteristic based on the orbifold concept
por: Naskręcki, Bartosz, et al.
Publicado: (2021) -
Multiplicity-weighted Euler’s formula for symmetrically arranged space-filling polyhedra
por: Dauter, Zbigniew, et al.
Publicado: (2020) -
Crystallographic education in the 21st century
por: Gražulis, Saulius, et al.
Publicado: (2015) -
Evidence-Based Practice in the Field of Nutrition: A Systematic Review of Knowledge, Skills, Attitudes, Behaviors and Teaching Strategies
por: Ghosh, Nirjhar, et al.
Publicado: (2022) -
Using Test Question Templates to teach physiology core concepts
por: Crowther, Gregory J., et al.
Publicado: (2023)