Cargando…
Inferring global-scale temporal latent topics from news reports to predict public health interventions for COVID-19
The COVID-19 pandemic has highlighted the importance of non-pharmacological interventions (NPIs) for controlling epidemics of emerging infectious diseases. Despite their importance, NPIs have been monitored mainly through the manual efforts of volunteers. This approach hinders measurement of the NPI...
Autores principales: | Wen, Zhi, Powell, Guido, Chafi, Imane, Buckeridge, David L., Li, Yue |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8805211/ https://www.ncbi.nlm.nih.gov/pubmed/35128492 http://dx.doi.org/10.1016/j.patter.2022.100435 |
Ejemplares similares
-
EpiTopics: A dynamic machine learning model to predict and inform non-pharmacological public health interventions from global news reports
por: Wen, Zhi, et al.
Publicado: (2022) -
Inferring multimodal latent topics from electronic health records
por: Li, Yue, et al.
Publicado: (2020) -
Detecting Latent Topics and Trends in Global Publications on Brucellosis Disease Using Text Mining
por: Dastani, Meisam, et al.
Publicado: (2022) -
Temporal context and latent state inference in the hippocampal splitter signal
por: Duvelle, Éléonore, et al.
Publicado: (2023) -
BioCaster in 2021: automatic disease outbreaks detection from global news media
por: Meng, Zaiqiao, et al.
Publicado: (2022)