Cargando…
Dosimetric impact of deep learning-based CT auto-segmentation on radiation therapy treatment planning for prostate cancer
BACKGROUND: The evaluation of automatic segmentation algorithms is commonly performed using geometric metrics. An analysis based on dosimetric parameters might be more relevant in clinical practice but is often lacking in the literature. The aim of this study was to investigate the impact of state-o...
Autores principales: | Kawula, Maria, Purice, Dinu, Li, Minglun, Vivar, Gerome, Ahmadi, Seyed-Ahmad, Parodi, Katia, Belka, Claus, Landry, Guillaume, Kurz, Christopher |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8805311/ https://www.ncbi.nlm.nih.gov/pubmed/35101068 http://dx.doi.org/10.1186/s13014-022-01985-9 |
Ejemplares similares
-
Prior knowledge based deep learning auto-segmentation in magnetic resonance imaging-guided radiotherapy of prostate cancer
por: Kawula, Maria, et al.
Publicado: (2023) -
Dosimetric comparison of MR-linac-based IMRT and conventional VMAT treatment plans for prostate cancer
por: Da Silva Mendes, Vanessa, et al.
Publicado: (2021) -
Planning CT Identifies Patients at Risk of High Prostate Intrafraction Motion
por: Ballhausen, Hendrik, et al.
Publicado: (2023) -
Assessment of intrafractional prostate motion and its dosimetric impact in MRI-guided online adaptive radiotherapy with gating
por: Xiong, Yuqing, et al.
Publicado: (2022) -
Feasibility of automated proton therapy plan adaptation for head and neck tumors using cone beam CT images
por: Kurz, Christopher, et al.
Publicado: (2016)