Cargando…
Seizure Prediction in EEG Signals Using STFT and Domain Adaptation
Epileptic seizure prediction is one of the most used therapeutic adjuvant strategies for drug-resistant epilepsy. Conventional approaches commonly collect training and testing samples from the same patient due to inter-individual variability. However, the challenging problem of domain shift between...
Autores principales: | Peng, Peizhen, Song, Yang, Yang, Lu, Wei, Haikun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8805457/ https://www.ncbi.nlm.nih.gov/pubmed/35115906 http://dx.doi.org/10.3389/fnins.2021.825434 |
Ejemplares similares
-
Speech Enhancement in the STFT Domain
por: Benesty, Jacob, et al.
Publicado: (2012) -
Enhancing the decoding accuracy of EEG signals by the introduction of anchored-STFT and adversarial data augmentation method
por: Ali, Omair, et al.
Publicado: (2022) -
Automatic Seizure Classification Based on Domain-Invariant Deep Representation of EEG
por: Cao, Xincheng, et al.
Publicado: (2021) -
Epileptic Seizure Detection Based on EEG Signals and CNN
por: Zhou, Mengni, et al.
Publicado: (2018) -
Pseudo-Bayesian Approach for Robust Mode Detection and Extraction Based on the STFT
por: Legros, Quentin, et al.
Publicado: (2022)