Cargando…
Using Community Ecology Theory and Computational Microbiome Methods To Study Human Milk as a Biological System
Human milk is a complex and dynamic biological system that has evolved to optimally nourish and protect human infants. Yet, according to a recent priority-setting review, “our current understanding of human milk composition and its individual components and their functions fails to fully recognize t...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8805635/ https://www.ncbi.nlm.nih.gov/pubmed/35103486 http://dx.doi.org/10.1128/msystems.01132-21 |
Sumario: | Human milk is a complex and dynamic biological system that has evolved to optimally nourish and protect human infants. Yet, according to a recent priority-setting review, “our current understanding of human milk composition and its individual components and their functions fails to fully recognize the importance of the chronobiology and systems biology of human milk in the context of milk synthesis, optimal timing and duration of feeding, and period of lactation” (P. Christian et al., Am J Clin Nutr 113:1063–1072, 2021, https://doi.org/10.1093/ajcn/nqab075). We attribute this critical knowledge gap to three major reasons as follows. (i) Studies have typically examined each subsystem of the mother-milk-infant “triad” in isolation and often focus on a single element or component (e.g., maternal lactation physiology or milk microbiome or milk oligosaccharides or infant microbiome or infant gut physiology). This undermines our ability to develop comprehensive representations of the interactions between these elements and study their response to external perturbations. (ii) Multiomics studies are often cross-sectional, presenting a snapshot of milk composition, largely ignoring the temporal variability during lactation. The lack of temporal resolution precludes the characterization and inference of robust interactions between the dynamic subsystems of the triad. (iii) We lack computational methods to represent and decipher the complex ecosystem of the mother-milk-infant triad and its environment. In this review, we advocate for longitudinal multiomics data collection and demonstrate how incorporating knowledge gleaned from microbial community ecology and computational methods developed for microbiome research can serve as an anchor to advance the study of human milk and its many components as a “system within a system.” |
---|