Cargando…

Benchmarking small-variant genotyping in polyploids

Genotyping from sequencing is the basis of emerging strategies in the molecular breeding of polyploid plants. However, compared with the situation for diploids, in which genotyping accuracies are confidently determined with comprehensive benchmarks, polyploids have been neglected; there are no bench...

Descripción completa

Detalles Bibliográficos
Autores principales: Cooke, Daniel P., Wedge, David C., Lunter, Gerton
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8805713/
https://www.ncbi.nlm.nih.gov/pubmed/34965940
http://dx.doi.org/10.1101/gr.275579.121
Descripción
Sumario:Genotyping from sequencing is the basis of emerging strategies in the molecular breeding of polyploid plants. However, compared with the situation for diploids, in which genotyping accuracies are confidently determined with comprehensive benchmarks, polyploids have been neglected; there are no benchmarks measuring genotyping error rates for small variants using real sequencing reads. We previously introduced a variant calling method, Octopus, that accurately calls germline variants in diploids and somatic mutations in tumors. Here, we evaluate Octopus and other popular tools on whole-genome tetraploid and hexaploid data sets created using in silico mixtures of diploid Genome in a Bottle (GIAB) samples. We find that genotyping errors are abundant for typical sequencing depths but that Octopus makes 25% fewer errors than other methods on average. We supplement our benchmarks with concordance analysis in real autotriploid banana data sets.