Cargando…
Benchmarking small-variant genotyping in polyploids
Genotyping from sequencing is the basis of emerging strategies in the molecular breeding of polyploid plants. However, compared with the situation for diploids, in which genotyping accuracies are confidently determined with comprehensive benchmarks, polyploids have been neglected; there are no bench...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8805713/ https://www.ncbi.nlm.nih.gov/pubmed/34965940 http://dx.doi.org/10.1101/gr.275579.121 |
Sumario: | Genotyping from sequencing is the basis of emerging strategies in the molecular breeding of polyploid plants. However, compared with the situation for diploids, in which genotyping accuracies are confidently determined with comprehensive benchmarks, polyploids have been neglected; there are no benchmarks measuring genotyping error rates for small variants using real sequencing reads. We previously introduced a variant calling method, Octopus, that accurately calls germline variants in diploids and somatic mutations in tumors. Here, we evaluate Octopus and other popular tools on whole-genome tetraploid and hexaploid data sets created using in silico mixtures of diploid Genome in a Bottle (GIAB) samples. We find that genotyping errors are abundant for typical sequencing depths but that Octopus makes 25% fewer errors than other methods on average. We supplement our benchmarks with concordance analysis in real autotriploid banana data sets. |
---|