Cargando…

Methyl-CpG-binding protein 2 promotes osteogenic differentiation of bone marrow mesenchymal stem cells through regulating forkhead box F1/Wnt/β-Catenin axis

Postmenopausal osteoporosis is characterized by inadequate bone formation of osteoblasts and excessive bone resorption of osteoclasts. Bone marrow mesenchymal stem cells (BMSCs), with the potential of osteogenic differentiation, have been widely used in the bone tissues engineering for the treatment...

Descripción completa

Detalles Bibliográficos
Autores principales: Ji, Weiqin, Sun, Xiaotong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8805827/
https://www.ncbi.nlm.nih.gov/pubmed/34967263
http://dx.doi.org/10.1080/21655979.2021.2012357
_version_ 1784643304052228096
author Ji, Weiqin
Sun, Xiaotong
author_facet Ji, Weiqin
Sun, Xiaotong
author_sort Ji, Weiqin
collection PubMed
description Postmenopausal osteoporosis is characterized by inadequate bone formation of osteoblasts and excessive bone resorption of osteoclasts. Bone marrow mesenchymal stem cells (BMSCs), with the potential of osteogenic differentiation, have been widely used in the bone tissues engineering for the treatment of bone diseases, including postmenopausal osteoporosis. Methyl-CpG-binding protein 2 (MECP2) has been reported to be implicated in bone formation during the development of Rett syndrome. However, the influence of MeCP2 on osteogenic differentiation of BMSCs during osteoporosis remains unclear. Firstly, mice model with estrogen deficiency-induced osteoporosis was established through ovariectomy (OVX). MeCP2 was found to be down-regulated in bone tissues and BMSCs of OVX-induced osteoporosis mice. Secondly, over-expression of MeCP2 enhanced the calcium deposition of BMSCs isolated from the OVX-induced osteoporosis mice. Moreover, expression of osteogenic biomarkers including alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX2), collagen type I alpha 1 (COL1A1), and osteocalcin (OCN) was increased in BMSCs by overexpression of MeCP2. Thirdly, over-expression of MeCP2 reduced protein expression of forkhead box F1 (FOXF1) and adenomatous polyposis coli (APC), while enhanced Wnt5a and β-catenin expression in BMSCs. Over-expression of FOXF1 attenuated MeCP2 over-expression-induced decrease of FOXF1 and APC, as well as increase of Wnt5a and β-catenin. Finally, the increased calcium deposition, protein expression of ALP, RUNX2COL1A1 and OCN induced by concomitant overexpression of MeCP2 were also restored by FOXF1 over-expression. In conclusion, MeCP2 promoted osteogenic differentiation of BMSCs through regulating FOXF1/Wnt/β-Catenin axis to attenuate osteoporosis. MeCP2 over-expression reduced FOXF1 to promote the activation of Wnt5a/β-Catenin and promote osteogenic differentiation of BMSCs during the prevention of postmenopausal osteoporosis.
format Online
Article
Text
id pubmed-8805827
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Taylor & Francis
record_format MEDLINE/PubMed
spelling pubmed-88058272022-02-02 Methyl-CpG-binding protein 2 promotes osteogenic differentiation of bone marrow mesenchymal stem cells through regulating forkhead box F1/Wnt/β-Catenin axis Ji, Weiqin Sun, Xiaotong Bioengineered Research Paper Postmenopausal osteoporosis is characterized by inadequate bone formation of osteoblasts and excessive bone resorption of osteoclasts. Bone marrow mesenchymal stem cells (BMSCs), with the potential of osteogenic differentiation, have been widely used in the bone tissues engineering for the treatment of bone diseases, including postmenopausal osteoporosis. Methyl-CpG-binding protein 2 (MECP2) has been reported to be implicated in bone formation during the development of Rett syndrome. However, the influence of MeCP2 on osteogenic differentiation of BMSCs during osteoporosis remains unclear. Firstly, mice model with estrogen deficiency-induced osteoporosis was established through ovariectomy (OVX). MeCP2 was found to be down-regulated in bone tissues and BMSCs of OVX-induced osteoporosis mice. Secondly, over-expression of MeCP2 enhanced the calcium deposition of BMSCs isolated from the OVX-induced osteoporosis mice. Moreover, expression of osteogenic biomarkers including alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX2), collagen type I alpha 1 (COL1A1), and osteocalcin (OCN) was increased in BMSCs by overexpression of MeCP2. Thirdly, over-expression of MeCP2 reduced protein expression of forkhead box F1 (FOXF1) and adenomatous polyposis coli (APC), while enhanced Wnt5a and β-catenin expression in BMSCs. Over-expression of FOXF1 attenuated MeCP2 over-expression-induced decrease of FOXF1 and APC, as well as increase of Wnt5a and β-catenin. Finally, the increased calcium deposition, protein expression of ALP, RUNX2COL1A1 and OCN induced by concomitant overexpression of MeCP2 were also restored by FOXF1 over-expression. In conclusion, MeCP2 promoted osteogenic differentiation of BMSCs through regulating FOXF1/Wnt/β-Catenin axis to attenuate osteoporosis. MeCP2 over-expression reduced FOXF1 to promote the activation of Wnt5a/β-Catenin and promote osteogenic differentiation of BMSCs during the prevention of postmenopausal osteoporosis. Taylor & Francis 2021-12-30 /pmc/articles/PMC8805827/ /pubmed/34967263 http://dx.doi.org/10.1080/21655979.2021.2012357 Text en © 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Paper
Ji, Weiqin
Sun, Xiaotong
Methyl-CpG-binding protein 2 promotes osteogenic differentiation of bone marrow mesenchymal stem cells through regulating forkhead box F1/Wnt/β-Catenin axis
title Methyl-CpG-binding protein 2 promotes osteogenic differentiation of bone marrow mesenchymal stem cells through regulating forkhead box F1/Wnt/β-Catenin axis
title_full Methyl-CpG-binding protein 2 promotes osteogenic differentiation of bone marrow mesenchymal stem cells through regulating forkhead box F1/Wnt/β-Catenin axis
title_fullStr Methyl-CpG-binding protein 2 promotes osteogenic differentiation of bone marrow mesenchymal stem cells through regulating forkhead box F1/Wnt/β-Catenin axis
title_full_unstemmed Methyl-CpG-binding protein 2 promotes osteogenic differentiation of bone marrow mesenchymal stem cells through regulating forkhead box F1/Wnt/β-Catenin axis
title_short Methyl-CpG-binding protein 2 promotes osteogenic differentiation of bone marrow mesenchymal stem cells through regulating forkhead box F1/Wnt/β-Catenin axis
title_sort methyl-cpg-binding protein 2 promotes osteogenic differentiation of bone marrow mesenchymal stem cells through regulating forkhead box f1/wnt/β-catenin axis
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8805827/
https://www.ncbi.nlm.nih.gov/pubmed/34967263
http://dx.doi.org/10.1080/21655979.2021.2012357
work_keys_str_mv AT jiweiqin methylcpgbindingprotein2promotesosteogenicdifferentiationofbonemarrowmesenchymalstemcellsthroughregulatingforkheadboxf1wntbcateninaxis
AT sunxiaotong methylcpgbindingprotein2promotesosteogenicdifferentiationofbonemarrowmesenchymalstemcellsthroughregulatingforkheadboxf1wntbcateninaxis