Cargando…
Methyl-CpG-binding protein 2 promotes osteogenic differentiation of bone marrow mesenchymal stem cells through regulating forkhead box F1/Wnt/β-Catenin axis
Postmenopausal osteoporosis is characterized by inadequate bone formation of osteoblasts and excessive bone resorption of osteoclasts. Bone marrow mesenchymal stem cells (BMSCs), with the potential of osteogenic differentiation, have been widely used in the bone tissues engineering for the treatment...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8805827/ https://www.ncbi.nlm.nih.gov/pubmed/34967263 http://dx.doi.org/10.1080/21655979.2021.2012357 |
_version_ | 1784643304052228096 |
---|---|
author | Ji, Weiqin Sun, Xiaotong |
author_facet | Ji, Weiqin Sun, Xiaotong |
author_sort | Ji, Weiqin |
collection | PubMed |
description | Postmenopausal osteoporosis is characterized by inadequate bone formation of osteoblasts and excessive bone resorption of osteoclasts. Bone marrow mesenchymal stem cells (BMSCs), with the potential of osteogenic differentiation, have been widely used in the bone tissues engineering for the treatment of bone diseases, including postmenopausal osteoporosis. Methyl-CpG-binding protein 2 (MECP2) has been reported to be implicated in bone formation during the development of Rett syndrome. However, the influence of MeCP2 on osteogenic differentiation of BMSCs during osteoporosis remains unclear. Firstly, mice model with estrogen deficiency-induced osteoporosis was established through ovariectomy (OVX). MeCP2 was found to be down-regulated in bone tissues and BMSCs of OVX-induced osteoporosis mice. Secondly, over-expression of MeCP2 enhanced the calcium deposition of BMSCs isolated from the OVX-induced osteoporosis mice. Moreover, expression of osteogenic biomarkers including alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX2), collagen type I alpha 1 (COL1A1), and osteocalcin (OCN) was increased in BMSCs by overexpression of MeCP2. Thirdly, over-expression of MeCP2 reduced protein expression of forkhead box F1 (FOXF1) and adenomatous polyposis coli (APC), while enhanced Wnt5a and β-catenin expression in BMSCs. Over-expression of FOXF1 attenuated MeCP2 over-expression-induced decrease of FOXF1 and APC, as well as increase of Wnt5a and β-catenin. Finally, the increased calcium deposition, protein expression of ALP, RUNX2COL1A1 and OCN induced by concomitant overexpression of MeCP2 were also restored by FOXF1 over-expression. In conclusion, MeCP2 promoted osteogenic differentiation of BMSCs through regulating FOXF1/Wnt/β-Catenin axis to attenuate osteoporosis. MeCP2 over-expression reduced FOXF1 to promote the activation of Wnt5a/β-Catenin and promote osteogenic differentiation of BMSCs during the prevention of postmenopausal osteoporosis. |
format | Online Article Text |
id | pubmed-8805827 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Taylor & Francis |
record_format | MEDLINE/PubMed |
spelling | pubmed-88058272022-02-02 Methyl-CpG-binding protein 2 promotes osteogenic differentiation of bone marrow mesenchymal stem cells through regulating forkhead box F1/Wnt/β-Catenin axis Ji, Weiqin Sun, Xiaotong Bioengineered Research Paper Postmenopausal osteoporosis is characterized by inadequate bone formation of osteoblasts and excessive bone resorption of osteoclasts. Bone marrow mesenchymal stem cells (BMSCs), with the potential of osteogenic differentiation, have been widely used in the bone tissues engineering for the treatment of bone diseases, including postmenopausal osteoporosis. Methyl-CpG-binding protein 2 (MECP2) has been reported to be implicated in bone formation during the development of Rett syndrome. However, the influence of MeCP2 on osteogenic differentiation of BMSCs during osteoporosis remains unclear. Firstly, mice model with estrogen deficiency-induced osteoporosis was established through ovariectomy (OVX). MeCP2 was found to be down-regulated in bone tissues and BMSCs of OVX-induced osteoporosis mice. Secondly, over-expression of MeCP2 enhanced the calcium deposition of BMSCs isolated from the OVX-induced osteoporosis mice. Moreover, expression of osteogenic biomarkers including alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX2), collagen type I alpha 1 (COL1A1), and osteocalcin (OCN) was increased in BMSCs by overexpression of MeCP2. Thirdly, over-expression of MeCP2 reduced protein expression of forkhead box F1 (FOXF1) and adenomatous polyposis coli (APC), while enhanced Wnt5a and β-catenin expression in BMSCs. Over-expression of FOXF1 attenuated MeCP2 over-expression-induced decrease of FOXF1 and APC, as well as increase of Wnt5a and β-catenin. Finally, the increased calcium deposition, protein expression of ALP, RUNX2COL1A1 and OCN induced by concomitant overexpression of MeCP2 were also restored by FOXF1 over-expression. In conclusion, MeCP2 promoted osteogenic differentiation of BMSCs through regulating FOXF1/Wnt/β-Catenin axis to attenuate osteoporosis. MeCP2 over-expression reduced FOXF1 to promote the activation of Wnt5a/β-Catenin and promote osteogenic differentiation of BMSCs during the prevention of postmenopausal osteoporosis. Taylor & Francis 2021-12-30 /pmc/articles/PMC8805827/ /pubmed/34967263 http://dx.doi.org/10.1080/21655979.2021.2012357 Text en © 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Paper Ji, Weiqin Sun, Xiaotong Methyl-CpG-binding protein 2 promotes osteogenic differentiation of bone marrow mesenchymal stem cells through regulating forkhead box F1/Wnt/β-Catenin axis |
title | Methyl-CpG-binding protein 2 promotes osteogenic differentiation of bone marrow mesenchymal stem cells through regulating forkhead box F1/Wnt/β-Catenin axis |
title_full | Methyl-CpG-binding protein 2 promotes osteogenic differentiation of bone marrow mesenchymal stem cells through regulating forkhead box F1/Wnt/β-Catenin axis |
title_fullStr | Methyl-CpG-binding protein 2 promotes osteogenic differentiation of bone marrow mesenchymal stem cells through regulating forkhead box F1/Wnt/β-Catenin axis |
title_full_unstemmed | Methyl-CpG-binding protein 2 promotes osteogenic differentiation of bone marrow mesenchymal stem cells through regulating forkhead box F1/Wnt/β-Catenin axis |
title_short | Methyl-CpG-binding protein 2 promotes osteogenic differentiation of bone marrow mesenchymal stem cells through regulating forkhead box F1/Wnt/β-Catenin axis |
title_sort | methyl-cpg-binding protein 2 promotes osteogenic differentiation of bone marrow mesenchymal stem cells through regulating forkhead box f1/wnt/β-catenin axis |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8805827/ https://www.ncbi.nlm.nih.gov/pubmed/34967263 http://dx.doi.org/10.1080/21655979.2021.2012357 |
work_keys_str_mv | AT jiweiqin methylcpgbindingprotein2promotesosteogenicdifferentiationofbonemarrowmesenchymalstemcellsthroughregulatingforkheadboxf1wntbcateninaxis AT sunxiaotong methylcpgbindingprotein2promotesosteogenicdifferentiationofbonemarrowmesenchymalstemcellsthroughregulatingforkheadboxf1wntbcateninaxis |