Cargando…
Circular RNA Plasmacytoma Variant Translocation 1 (CircPVT1) knockdown ameliorates hypoxia-induced bladder fibrosis by regulating the miR-203/Suppressor of Cytokine Signaling 3 (SOCS3) signaling axis
The effects of circular RNAs (circRNAs) on bladder outlet obstruction (BOO)-induced hypertrophy and fibrogenesis in rats and hypoxia-induced bladder smooth muscle cell (BSMC) fibrosis remain unclear. This study aimed to determine the regulatory role of circRNAs in the phenotypic changes in BSMCs in...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8805914/ https://www.ncbi.nlm.nih.gov/pubmed/35000524 http://dx.doi.org/10.1080/21655979.2021.2001221 |
Sumario: | The effects of circular RNAs (circRNAs) on bladder outlet obstruction (BOO)-induced hypertrophy and fibrogenesis in rats and hypoxia-induced bladder smooth muscle cell (BSMC) fibrosis remain unclear. This study aimed to determine the regulatory role of circRNAs in the phenotypic changes in BSMCs in BOO-induced rats.circRNAmicroarray and real-time PCR were used to explore differentiated expressed circRNAs. Bioinformatics analyses and dual-luciferase reporter were performed to identify the targets for circRNA PVT1 (circPVT1). BOO was performed to establish a bladder fibrosis animal model. The circPVT1 and suppressor of cytokine signaling 3 (SOCS3) expression levels were upregulated (p = 0.0061 and 0.0328, respectively), whereas the microRNA-203a (miR-203) level was downregulated in rats with bladder remodeling (p=0.0085). Bioinformatics analyses and dual-luciferase reporter assay results confirmed that circPVT1 sponges miR-203 and that the latter targets the 3′-untranslated region of SOCS3. Additionally, circPVT1 knockdown alleviated BOO-induced bladder hypertrophy and fibrogenesis. Furthermore, hypoxia was induced in BSMCs to establish a cell model of bladder fibrosis. Hypoxia induction in BSMCs resulted in upregulated circPVT1 and SOCS3 levels (p = 0.0052) and downregulated miR-203 levels. Transfection with circPVT1 and SOCS3 shRNA ameliorated hypoxia-induced transforming growth factor-β (TGF-β1), TGFβR1, α-smooth muscle actin, fibrotic growth factor, extracellular matrix subtypes, BSMC proliferation, and apoptosis-associated cell injury, whereas co-transfection with miR-203 inhibitor counteracted the effect of circPVT1 shRNA on these phenotypes.These findings revealed a novel circRNA regulator of BOO-associated bladder wall remodeling and hypoxia-induced phenotypic changes in BMSCs by targeting the miR-203–SOCS3 signaling axis. |
---|