Cargando…

A novel classification method of lymph node metastasis in colorectal cancer

Colorectal cancer lymph node metastasis, which is highly associated with the patient’s cancer recurrence and survival rate, has been the focus of many therapeutic strategies that are highly associated with the patient’s cancer recurrence and survival rate. The popular methods for classification of l...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Jin, Wang, Peng, Zhou, Yang, Liang, Hong, Lu, Yang, Luan, Kuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8806456/
https://www.ncbi.nlm.nih.gov/pubmed/34024255
http://dx.doi.org/10.1080/21655979.2021.1930333
Descripción
Sumario:Colorectal cancer lymph node metastasis, which is highly associated with the patient’s cancer recurrence and survival rate, has been the focus of many therapeutic strategies that are highly associated with the patient’s cancer recurrence and survival rate. The popular methods for classification of lymph node metastasis by neural networks, however, show limitations as the available low-level features are inadequate for classification, and the radiologists are unable to quickly review the images. Identifying lymph node metastasis in colorectal cancer is a key factor in the treatment of patients with colorectal cancer. In the present work, an automatic classification method based on deep transfer learning was proposed. Specifically, the method resolved the problem of repetition of low-level features and combined these features with high-level features into a new feature map for classification; and a merged layer which merges all transmitted features from previous layers into a map of the first full connection layer. With a dataset collected from Harbin Medical University Cancer Hospital, the experiment involved a sample of 3,364 patients. Among these samples, 1,646 were positive, and 1,718 were negative. The experiment results showed the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were 0.8732, 0.8746, 0.8746 and 0.8728, respectively, and the accuracy and AUC were 0.8358 and 0.8569, respectively. These demonstrated that our method significantly outperformed the previous classification methods for colorectal cancer lymph node metastasis without increasing the depth and width of the model.