Cargando…
MicroRNA miR-495 regulates the development of Hepatocellular Carcinoma by targeting C1q/tumor necrosis factor-related protein-3 (CTRP3)
Hepatocellular carcinoma (HCC) represents a type of lethal cancer in the world and its treatment options produce limited and unsatisfactory effectiveness. MicroRNAs (miRNAs) that play critical roles in tumorigenesis have shown promising clinical therapeutic potential. Here, we reported that miRNA-49...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8806502/ https://www.ncbi.nlm.nih.gov/pubmed/34516334 http://dx.doi.org/10.1080/21655979.2021.1973878 |
_version_ | 1784643463211384832 |
---|---|
author | Zhang, Ruiguang Guo, Chunxia Liu, Ting Li, Wenting Chen, Xiliu |
author_facet | Zhang, Ruiguang Guo, Chunxia Liu, Ting Li, Wenting Chen, Xiliu |
author_sort | Zhang, Ruiguang |
collection | PubMed |
description | Hepatocellular carcinoma (HCC) represents a type of lethal cancer in the world and its treatment options produce limited and unsatisfactory effectiveness. MicroRNAs (miRNAs) that play critical roles in tumorigenesis have shown promising clinical therapeutic potential. Here, we reported that miRNA-495 (miR-495) plays important roles in inhibiting HCC cell growth via its regulation of cell-cycle progression as well as senescence. MiR-495 showed low levels in human HCC tissues and cells. Overexpressing miR-495 in HCC cells caused strong cell growth inhibition, which results from cell-cycle arrest and senescence. CTRP3 functioned as a possible target of miR-495 in HCC cells by bioinformatics prediction and biological assay. By inhibiting the expression of CTRP3 with siRNA, HCC cells also showed similar growth inhibition as miR-495 overexpression. The re-expression of CTRP3 in HCC cells with high-level miR-495 abolished miR-495 and caused cell growth inhibition. These results strongly suggested that CTRP3 was the functional target that weakened the effects of miR-495 in HCC cells. The in vivo experiment demonstrated miR-495 overexpression had great therapeutic effects on HCC in xenograft. Above all, this research revealed that miR-495 is essential in suppressing HCC growth, and its application serves as a promising strategy for HCC treatment. |
format | Online Article Text |
id | pubmed-8806502 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Taylor & Francis |
record_format | MEDLINE/PubMed |
spelling | pubmed-88065022022-02-02 MicroRNA miR-495 regulates the development of Hepatocellular Carcinoma by targeting C1q/tumor necrosis factor-related protein-3 (CTRP3) Zhang, Ruiguang Guo, Chunxia Liu, Ting Li, Wenting Chen, Xiliu Bioengineered Research Paper Hepatocellular carcinoma (HCC) represents a type of lethal cancer in the world and its treatment options produce limited and unsatisfactory effectiveness. MicroRNAs (miRNAs) that play critical roles in tumorigenesis have shown promising clinical therapeutic potential. Here, we reported that miRNA-495 (miR-495) plays important roles in inhibiting HCC cell growth via its regulation of cell-cycle progression as well as senescence. MiR-495 showed low levels in human HCC tissues and cells. Overexpressing miR-495 in HCC cells caused strong cell growth inhibition, which results from cell-cycle arrest and senescence. CTRP3 functioned as a possible target of miR-495 in HCC cells by bioinformatics prediction and biological assay. By inhibiting the expression of CTRP3 with siRNA, HCC cells also showed similar growth inhibition as miR-495 overexpression. The re-expression of CTRP3 in HCC cells with high-level miR-495 abolished miR-495 and caused cell growth inhibition. These results strongly suggested that CTRP3 was the functional target that weakened the effects of miR-495 in HCC cells. The in vivo experiment demonstrated miR-495 overexpression had great therapeutic effects on HCC in xenograft. Above all, this research revealed that miR-495 is essential in suppressing HCC growth, and its application serves as a promising strategy for HCC treatment. Taylor & Francis 2021-09-13 /pmc/articles/PMC8806502/ /pubmed/34516334 http://dx.doi.org/10.1080/21655979.2021.1973878 Text en © 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Paper Zhang, Ruiguang Guo, Chunxia Liu, Ting Li, Wenting Chen, Xiliu MicroRNA miR-495 regulates the development of Hepatocellular Carcinoma by targeting C1q/tumor necrosis factor-related protein-3 (CTRP3) |
title | MicroRNA miR-495 regulates the development of Hepatocellular Carcinoma by targeting C1q/tumor necrosis factor-related protein-3 (CTRP3) |
title_full | MicroRNA miR-495 regulates the development of Hepatocellular Carcinoma by targeting C1q/tumor necrosis factor-related protein-3 (CTRP3) |
title_fullStr | MicroRNA miR-495 regulates the development of Hepatocellular Carcinoma by targeting C1q/tumor necrosis factor-related protein-3 (CTRP3) |
title_full_unstemmed | MicroRNA miR-495 regulates the development of Hepatocellular Carcinoma by targeting C1q/tumor necrosis factor-related protein-3 (CTRP3) |
title_short | MicroRNA miR-495 regulates the development of Hepatocellular Carcinoma by targeting C1q/tumor necrosis factor-related protein-3 (CTRP3) |
title_sort | microrna mir-495 regulates the development of hepatocellular carcinoma by targeting c1q/tumor necrosis factor-related protein-3 (ctrp3) |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8806502/ https://www.ncbi.nlm.nih.gov/pubmed/34516334 http://dx.doi.org/10.1080/21655979.2021.1973878 |
work_keys_str_mv | AT zhangruiguang micrornamir495regulatesthedevelopmentofhepatocellularcarcinomabytargetingc1qtumornecrosisfactorrelatedprotein3ctrp3 AT guochunxia micrornamir495regulatesthedevelopmentofhepatocellularcarcinomabytargetingc1qtumornecrosisfactorrelatedprotein3ctrp3 AT liuting micrornamir495regulatesthedevelopmentofhepatocellularcarcinomabytargetingc1qtumornecrosisfactorrelatedprotein3ctrp3 AT liwenting micrornamir495regulatesthedevelopmentofhepatocellularcarcinomabytargetingc1qtumornecrosisfactorrelatedprotein3ctrp3 AT chenxiliu micrornamir495regulatesthedevelopmentofhepatocellularcarcinomabytargetingc1qtumornecrosisfactorrelatedprotein3ctrp3 |