Cargando…
MicroRNA-362-5p promotes the proliferation and inhibits apoptosis of trophoblast cells via targeting glutathione-disulfide reductase
Gestational diabetes mellitus (GDM), a common complication of pregnancy, harms the health of pregnant women and fetuses. MicroRNAs (miRNAs) dysregulation in placenta is involved in GDM. Herein, we explored the roles of miR-362-5p in GDM. After high glucose (HG) treated HTR-8/SVneo cells, CCK-8 and f...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8806602/ https://www.ncbi.nlm.nih.gov/pubmed/34107852 http://dx.doi.org/10.1080/21655979.2021.1933678 |
Sumario: | Gestational diabetes mellitus (GDM), a common complication of pregnancy, harms the health of pregnant women and fetuses. MicroRNAs (miRNAs) dysregulation in placenta is involved in GDM. Herein, we explored the roles of miR-362-5p in GDM. After high glucose (HG) treated HTR-8/SVneo cells, CCK-8 and flow cytometry were conducted to assess the capability of the proliferation and apoptosis, respectively. The data demonstrated that HG inhibited proliferation and induced apoptosis of HTR-8/SVneo cells. MiR-362-5p level was reduced in HG-treated cells and placenta tissues of GDM patients, measured by qPCR. Overexpressed miR-362-5p accelerated the proliferation and restrained apoptosis of HG-treated cells. Furthermore, glutathione-disulfide reductase (GSR) was verified as a target of miR-362-5p, through TargetScan database and dual-luciferase reporter assay. GSR was upregulated in GDM placenta tissues and was negatively regulated by miR-362-5p. Enforced GSR level abolished the effects of miR-362-5p overexpression on the proliferation and apoptosis of HTR-8/SVneo cells. Furthermore, miR-362-5p increased p-PI3K, p-AKT and bcl-2, while reduced bax and cleaved caspase3, which were abolished by GSR. In conclusion, miR-362-5p promoted cell proliferation and inhibited apoptosis via targeting GSR and activating PI3K/AKT pathway. The findings mentioned above suggested that miR-362-5p might be a therapy target of GDM. |
---|