Cargando…

CTRP6(C1q/Tumor Necrosis Factor (TNF)-related protein-6) alleviated the sevoflurane induced injury of mice central nervous system by promoting the expression of p-Akt (phosphorylated Akt)

Postoperative cognitive impairment and nervous system damage caused by anesthetics seriously affect patient’s postoperative recovery. Recent study has revealed that CTRP6 could alleviate apoptosis, inflammation and oxidative stress of nerve cells, thereby relieving nervous system damage induced by c...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Zhiwen, Yang, Bin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8806630/
https://www.ncbi.nlm.nih.gov/pubmed/34516328
http://dx.doi.org/10.1080/21655979.2021.1967838
Descripción
Sumario:Postoperative cognitive impairment and nervous system damage caused by anesthetics seriously affect patient’s postoperative recovery. Recent study has revealed that CTRP6 could alleviate apoptosis, inflammation and oxidative stress of nerve cells, thereby relieving nervous system damage induced by cerebral ischemia reperfusion. However, whether CTRP6 could relieve sevoflurane induced central nervous system injury is unclear. We stimulated C57BL/6 mice with sevoflurane and injected CTRP6 overexpression adenovirus vector. Next, H&E staining and TUNEL assays were performed to examine the effect of CTRP6 on sevoflurane induced injury of central nervous system. Finally, we isolated primary nerve cells of hippocampus. Flow cytometry and commercial kits were used for the detection of apoptosis and ROS levels of these cells. Western blotting was used for the detection of the expression level of p-Akt in central nervous tissues and primary cells. Results showed that sevoflurane induced injury and apoptosis of central nervous tissues. Overexpression of CTRP6 relieved apoptosis and injury of these tissues. CTRP6 inhibited the expression of cleaved caspase-3 and cleaved PARP in these tissues. Sevoflurane promoted apoptosis of primary cells and enhanced the expression of ROS and MDA in these cells. Overexpression of CTRP6 alleviated apoptosis and suppressed production of ROS and MDA in these cells. In addition, CTRP6 also enhanced the expression of p-Akt in primary cells. Taken together, our results suggested that CTRP6 relieved sevoflurane induced injury of central nervous tissues by promoting the expression of p-Akt. Therefore, the targeted drug of CTRP6 should be explored for the remission of these symptoms.