Cargando…

Long non-coding RNA COL4A2-AS1 facilitates cell proliferation and glycolysis of colorectal cancer cells via miR-20b-5p/hypoxia inducible factor 1 alpha subunit axis

Long non-coding RNAs (lncRNAs) have critical functions in tumorigenesis and progression of colorectal cancer (CRC). The role of lncRNA COL4A2-AS1 (COL4A2-AS1) lacks system investigation. The current study comprehensively analyzed the expression, biological functions, and mechanism of COL4A2-AS1 in C...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Zijun, Wang, Yeming, Deng, Jianwu, Liu, Dong, Zhang, Lingling, Shao, Hua, Wang, Zilu, Zhu, Wenjun, Zhao, Cheng, Ke, Qungang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8806750/
https://www.ncbi.nlm.nih.gov/pubmed/34477476
http://dx.doi.org/10.1080/21655979.2021.1969833
Descripción
Sumario:Long non-coding RNAs (lncRNAs) have critical functions in tumorigenesis and progression of colorectal cancer (CRC). The role of lncRNA COL4A2-AS1 (COL4A2-AS1) lacks system investigation. The current study comprehensively analyzed the expression, biological functions, and mechanism of COL4A2-AS1 in CRC through performing real-time quantitative PCR (RT-qPCR), Western blot, cell transfection, cell colony assay, MTT assay, flow cytometry and dual-luciferase reporter system assays. A xenograft model of CRC was constructed to further verify the function of COL4A2-AS1 in CRC progression in vivo. The data revealed an upregulated expression of COL4A2-AS1 in CRC tissues and cell lines than paired adjacent tissues and normal cell line. Silencing COL4A2-AS1 inhibited proliferation, aerobic glycolysis, and promoted apoptosis of CRC cells in vivo and in vitro. However, overexpression of COL4A2-AS1 significantly promoted CRC cell proliferation and aerobic glycolysis. In CRC cells, miR-20b-5p was sponged by COL4A2-AS1 and hypoxia-inducible factor 1 alpha subunit (HIF1A). Restoration of HIF1A expression reversed the inhibitory effects of silencing COL4A2-AS1 on aerobic glycolysis and proliferation of CRC cells. The current findings showed that COL4A2-AS1 promoted the proliferation, and aerobic glycolysis of CRC cells potentially through modulating the miR-20b-5p/HIF1A axis.