Cargando…

Circular RNA PUM1 (CircPUM1) attenuates trophoblast cell dysfunction and inflammation in recurrent spontaneous abortion via the MicroRNA-30a-5p (miR-30a-5p)/JUNB axis

Recurrent spontaneous abortion (RSA) is a threat to human reproductive health worldwide. CircPUM1 has been reported to participate in the pathogenesis of various diseases. However, there has been no report on its association with RSA yet. In this study, gene expressions were examined by RT-qPCR. Pro...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Lihua, Shi, Lijuan, Ye, Wenfeng, Li, Shuping, Liu, Xinmei, Zhu, Zonghao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8806872/
https://www.ncbi.nlm.nih.gov/pubmed/34519628
http://dx.doi.org/10.1080/21655979.2021.1973207
Descripción
Sumario:Recurrent spontaneous abortion (RSA) is a threat to human reproductive health worldwide. CircPUM1 has been reported to participate in the pathogenesis of various diseases. However, there has been no report on its association with RSA yet. In this study, gene expressions were examined by RT-qPCR. Protein levels of JUNB and cleaved caspases-3 were detected by Western blotting. ELISA was used to detect TNF-α, IL-6, and IL-8 levels. Cell viability, migration, invasion, and apoapsis were analyzed using CCK-8, transwell, and flow cytometry assays. The association between miR-30a-5p and circPUM1 or JUNB was identified by bioinformatics analysis, dual-luciferase reporter assay, and RIP assay. Herein, we found circPUM1 was significantly downregulated in RSA placental samples. CircPUM1 knockdown induced decreased proliferation, migration, and invasion, but increased apoptosis, pro-apoptotic protein (cleaved caspases-3) level, and proinflammatory factor (TNF-α, IL-6, and IL-8) secretion in trophoblast cells. Furthermore, we confirmed that circPUM1 was a sponge for miR-30a-5p, and JUNB was directly targeted by miR-30a-5p. It was demonstrated that miR-30a-5p inhibition could reverse trophoblast cell dysfunction and inflammation induced by circPUM1 knockdown. In addition, we found that JUNB expression was negatively modulated by miR-30a-5p and positively regulated by circPUM1. Moreover, circPUM1 inhibition exacerbated dysfunction and inflammation in trophoblast cells via targeting JUNB. To sum up, our study indicated that circPUM1 could impair RSA occurrence and development by facilitating trophoblast cellular processes and protecting against inflammation via the miR-30a-5p/JUNB axis, providing a new target for the improvement of RSA diagnosis and treatment.