Cargando…
MAPK interacting serine/threonine kinase 1 (MKNK1), one target gene of miR-223-3p, correlates with neutrophils in sepsis based on bioinformatic analysis
Sepsis, resulting from a harmful or damaging response to infection, is a complex and severe disease that causes high mortality. Three independent expression profiles of miRNA – GSE94717, GSE149764, and GSE101639 – were collected and integrated to analyze miRNAs associated with sepsis. One miRNA, miR...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8806917/ https://www.ncbi.nlm.nih.gov/pubmed/34115574 http://dx.doi.org/10.1080/21655979.2021.1935405 |
_version_ | 1784643572854685696 |
---|---|
author | Fu, Mingmin Zhang, Kai |
author_facet | Fu, Mingmin Zhang, Kai |
author_sort | Fu, Mingmin |
collection | PubMed |
description | Sepsis, resulting from a harmful or damaging response to infection, is a complex and severe disease that causes high mortality. Three independent expression profiles of miRNA – GSE94717, GSE149764, and GSE101639 – were collected and integrated to analyze miRNAs associated with sepsis. One miRNA, miR-223-3p, was detected significantly downregulated in patients with sepsis. The upregulated miR-223-3p target genes in patients with sepsis were enriched in central carbon metabolism associated with HIF-1 signaling and galactose metabolism. Specially, three HIF-1 signaling genes – hypoxia-inducible factor 1-alpha (HIF1A), hexokinase 2 (HK2), and MAP kinase-interacting serine/threonine-protein kinase 1 (MKNK1) – were found significantly upregulated in patients with sepsis. Additionally, MKNK1 expression was downregulated in septic responders to early therapeutic treatments. Neutrophils were significantly accumulated in patients with sepsis and decreased in responders after therapy; MKNK1 was significantly positively correlated with neutrophils. Our findings indicate MKNK1, one targets of miR-223-3p, might be involved in sepsis via regulating the neutrophils abundance by mediating the expression inflammation factors. |
format | Online Article Text |
id | pubmed-8806917 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Taylor & Francis |
record_format | MEDLINE/PubMed |
spelling | pubmed-88069172022-02-02 MAPK interacting serine/threonine kinase 1 (MKNK1), one target gene of miR-223-3p, correlates with neutrophils in sepsis based on bioinformatic analysis Fu, Mingmin Zhang, Kai Bioengineered Research Paper Sepsis, resulting from a harmful or damaging response to infection, is a complex and severe disease that causes high mortality. Three independent expression profiles of miRNA – GSE94717, GSE149764, and GSE101639 – were collected and integrated to analyze miRNAs associated with sepsis. One miRNA, miR-223-3p, was detected significantly downregulated in patients with sepsis. The upregulated miR-223-3p target genes in patients with sepsis were enriched in central carbon metabolism associated with HIF-1 signaling and galactose metabolism. Specially, three HIF-1 signaling genes – hypoxia-inducible factor 1-alpha (HIF1A), hexokinase 2 (HK2), and MAP kinase-interacting serine/threonine-protein kinase 1 (MKNK1) – were found significantly upregulated in patients with sepsis. Additionally, MKNK1 expression was downregulated in septic responders to early therapeutic treatments. Neutrophils were significantly accumulated in patients with sepsis and decreased in responders after therapy; MKNK1 was significantly positively correlated with neutrophils. Our findings indicate MKNK1, one targets of miR-223-3p, might be involved in sepsis via regulating the neutrophils abundance by mediating the expression inflammation factors. Taylor & Francis 2021-06-11 /pmc/articles/PMC8806917/ /pubmed/34115574 http://dx.doi.org/10.1080/21655979.2021.1935405 Text en © 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) ), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Paper Fu, Mingmin Zhang, Kai MAPK interacting serine/threonine kinase 1 (MKNK1), one target gene of miR-223-3p, correlates with neutrophils in sepsis based on bioinformatic analysis |
title | MAPK interacting serine/threonine kinase 1 (MKNK1), one target gene of miR-223-3p, correlates with neutrophils in sepsis based on bioinformatic analysis |
title_full | MAPK interacting serine/threonine kinase 1 (MKNK1), one target gene of miR-223-3p, correlates with neutrophils in sepsis based on bioinformatic analysis |
title_fullStr | MAPK interacting serine/threonine kinase 1 (MKNK1), one target gene of miR-223-3p, correlates with neutrophils in sepsis based on bioinformatic analysis |
title_full_unstemmed | MAPK interacting serine/threonine kinase 1 (MKNK1), one target gene of miR-223-3p, correlates with neutrophils in sepsis based on bioinformatic analysis |
title_short | MAPK interacting serine/threonine kinase 1 (MKNK1), one target gene of miR-223-3p, correlates with neutrophils in sepsis based on bioinformatic analysis |
title_sort | mapk interacting serine/threonine kinase 1 (mknk1), one target gene of mir-223-3p, correlates with neutrophils in sepsis based on bioinformatic analysis |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8806917/ https://www.ncbi.nlm.nih.gov/pubmed/34115574 http://dx.doi.org/10.1080/21655979.2021.1935405 |
work_keys_str_mv | AT fumingmin mapkinteractingserinethreoninekinase1mknk1onetargetgeneofmir2233pcorrelateswithneutrophilsinsepsisbasedonbioinformaticanalysis AT zhangkai mapkinteractingserinethreoninekinase1mknk1onetargetgeneofmir2233pcorrelateswithneutrophilsinsepsisbasedonbioinformaticanalysis |