Cargando…
Guard-cell phytochromes impact seedling photomorphogenesis and rosette leaf morphology
Using a previously established transgenic approach to inactivate phytochrome chromophore synthesis in specific organs or tissues, we used a guard cell-specific promoter to induce phytochrome deficiencies in guard cells of Arabidopsis thaliana. Analyses of multiple homozygous lines depleted of phytoc...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Caltech Library
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8808294/ https://www.ncbi.nlm.nih.gov/pubmed/35128344 http://dx.doi.org/10.17912/micropub.biology.000521 |
Sumario: | Using a previously established transgenic approach to inactivate phytochrome chromophore synthesis in specific organs or tissues, we used a guard cell-specific promoter to induce phytochrome deficiencies in guard cells of Arabidopsis thaliana. Analyses of multiple homozygous lines depleted of phytochromes in stomatal guard cells indicated elongated hypocotyls specifically in red and far-red growth conditions. Furthermore, rosette leaves of adult plants with guard cell-specific phytochrome deficiencies showed enhanced serration compared to the wild-type Col-0 parent. Thus, we demonstrate that guard cell-localized phytochromes impact the inhibition of hypocotyl elongation, as well as leaf margin morphology of adult rosette leaves in A. thaliana. |
---|