Cargando…
Incentivising research data sharing: a scoping review
Background: Numerous mechanisms exist to incentivise researchers to share their data. This scoping review aims to identify and summarise evidence of the efficacy of different interventions to promote open data practices and provide an overview of current research. Methods: This scoping review is bas...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
F1000 Research Limited
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8808319/ https://www.ncbi.nlm.nih.gov/pubmed/35169638 http://dx.doi.org/10.12688/wellcomeopenres.17286.2 |
Sumario: | Background: Numerous mechanisms exist to incentivise researchers to share their data. This scoping review aims to identify and summarise evidence of the efficacy of different interventions to promote open data practices and provide an overview of current research. Methods: This scoping review is based on data identified from Web of Science and LISTA, limited from 2016 to 2021. A total of 1128 papers were screened, with 38 items being included. Items were selected if they focused on designing or evaluating an intervention or presenting an initiative to incentivise sharing. Items comprised a mixture of research papers, opinion pieces and descriptive articles. Results: Seven major themes in the literature were identified: publisher/journal data sharing policies, metrics, software solutions, research data sharing agreements in general, open science ‘badges’, funder mandates, and initiatives. Conclusions: A number of key messages for data sharing include: the need to build on existing cultures and practices, meeting people where they are and tailoring interventions to support them; the importance of publicising and explaining the policy/service widely; the need to have disciplinary data champions to model good practice and drive cultural change; the requirement to resource interventions properly; and the imperative to provide robust technical infrastructure and protocols, such as labelling of data sets, use of DOIs, data standards and use of data repositories. |
---|