Cargando…
Influenza’s Plummeting During the COVID-19 Pandemic: The Roles of Mask-Wearing, Mobility Change, and SARS-CoV-2 Interference
Seasonal influenza activity typically peaks in the winter months but plummeted globally during the current coronavirus disease 2019 (COVID-19) pandemic. Unraveling lessons from influenza’s unprecedented low profile is critical in informing preparedness for incoming influenza seasons. Here, we explor...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8808434/ https://www.ncbi.nlm.nih.gov/pubmed/35127196 http://dx.doi.org/10.1016/j.eng.2021.12.011 |
Sumario: | Seasonal influenza activity typically peaks in the winter months but plummeted globally during the current coronavirus disease 2019 (COVID-19) pandemic. Unraveling lessons from influenza’s unprecedented low profile is critical in informing preparedness for incoming influenza seasons. Here, we explored a country-specific inference model to estimate the effects of mask-wearing, mobility changes (international and domestic), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) interference in China, England, and the United States. We found that a one-week increase in mask-wearing intervention had a percent reduction of 11.3%–35.2% in influenza activity in these areas. The one-week mobility mitigation had smaller effects for the international (1.7%–6.5%) and the domestic community (1.6%–2.8%). In 2020–2021, the mask-wearing intervention alone could decline percent positivity by 13.3–19.8. The mobility change alone could reduce percent positivity by 5.2–14.0, of which 79.8%–98.2% were attributed to the deflected international travel. Only in 2019–2020, SARS-CoV-2 interference had statistically significant effects. There was a reduction in percent positivity of 7.6 (2.4–14.4) and 10.2 (7.2–13.6) in northern China and England, respectively. Our results have implications for understanding how influenza evolves under non-pharmaceutical interventions and other respiratory diseases and will inform health policy and the design of tailored public health measures. |
---|