Cargando…
PANDA2: protein function prediction using graph neural networks
High-throughput sequencing technologies have generated massive protein sequences, but the annotations of protein sequences highly rely on the low-throughput and expensive biological experiments. Therefore, accurate and fast computational alternatives are needed to infer functional knowledge from pro...
Autores principales: | Zhao, Chenguang, Liu, Tong, Wang, Zheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8808544/ https://www.ncbi.nlm.nih.gov/pubmed/35118378 http://dx.doi.org/10.1093/nargab/lqac004 |
Ejemplares similares
-
Predicting residue‐specific qualities of individual protein models using residual neural networks and graph neural networks
por: Zhao, Chenguang, et al.
Publicado: (2022) -
PANDA: Protein function prediction using domain architecture and affinity propagation
por: Wang, Zheng, et al.
Publicado: (2018) -
SUPREME: multiomics data integration using graph convolutional networks
por: Kesimoglu, Ziynet Nesibe, et al.
Publicado: (2023) -
GraphPart: homology partitioning for biological sequence analysis
por: Teufel, Felix, et al.
Publicado: (2023) -
The human papillomavirus type 16 L1 protein directly interacts with E2 and enhances E2-dependent replication and transcription activation
por: Siddiqa, Abida, et al.
Publicado: (2015)