Cargando…

Computed Tomography–Mediated Registration of Trapeziometacarpal Articular Cartilage Using Intraarticular Optical Coherence Tomography and Cryomicrotome Imaging: A Cadaver Study

OBJECTIVE: Accurate, high-resolution imaging of articular cartilage thickness is an important clinical challenge in patients with osteoarthritis, especially in small joints. In this study, computed tomography (CT) mediated catheter-based optical coherence tomography (OCT) was utilized to create a di...

Descripción completa

Detalles Bibliográficos
Autores principales: Cernohorsky, Paul, Strackee, Simon D., Streekstra, Geert J., van den Wijngaard, Jeroen P., Spaan, Jos A. E., Siebes, Maria, van Leeuwen, Ton G., de Bruin, Daniel M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8808822/
https://www.ncbi.nlm.nih.gov/pubmed/31291745
http://dx.doi.org/10.1177/1947603519860247
Descripción
Sumario:OBJECTIVE: Accurate, high-resolution imaging of articular cartilage thickness is an important clinical challenge in patients with osteoarthritis, especially in small joints. In this study, computed tomography (CT) mediated catheter-based optical coherence tomography (OCT) was utilized to create a digital reconstruction of the articular surface of the trapeziometacarpal (TMC) joint and to assess cartilage thickness in comparison to cryomicrotome data. DESIGN: Using needle-based introduction of the OCT probe, the articular surface of the TMC joint of 5 cadaver wrists was scanned in different probe positions with matching CT scans to record the intraarticular probe trajectory. Subsequently and based on the acquired CT data, 3-dimensional realignment of the OCT data to the curved intraarticular trajectory was performed for all probe positions. The scanned TMC joints were processed using a cryomicrotome imaging system. Finally, cartilage thickness measurements between OCT and cryomicrotome data were compared. RESULTS: Successful visualization of TMC articular cartilage was performed using OCT. The CT-mediated registration yielded a digital reconstruction of the articular surface on which thickness measurements could be performed. A near-perfect agreement between OCT and cryomicrotome thickness measurements was found (r(2) = 0.989). CONCLUSION: The proposed approach enables 3D reconstruction of the TMC articular surface with subsequent accurate cartilage thickness measurements, encouraging the development of intraarticular cartilage OCT for future (clinical) application.