Cargando…

Diagnostic Evidence GAuge of Single cells (DEGAS): a flexible deep transfer learning framework for prioritizing cells in relation to disease

We propose DEGAS (Diagnostic Evidence GAuge of Single cells), a novel deep transfer learning framework, to transfer disease information from patients to cells. We call such transferrable information “impressions,” which allow individual cells to be associated with disease attributes like diagnosis,...

Descripción completa

Detalles Bibliográficos
Autores principales: Johnson, Travis S., Yu, Christina Y., Huang, Zhi, Xu, Siwen, Wang, Tongxin, Dong, Chuanpeng, Shao, Wei, Zaid, Mohammad Abu, Huang, Xiaoqing, Wang, Yijie, Bartlett, Christopher, Zhang, Yan, Walker, Brian A., Liu, Yunlong, Huang, Kun, Zhang, Jie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8808996/
https://www.ncbi.nlm.nih.gov/pubmed/35105355
http://dx.doi.org/10.1186/s13073-022-01012-2
_version_ 1784643930505084928
author Johnson, Travis S.
Yu, Christina Y.
Huang, Zhi
Xu, Siwen
Wang, Tongxin
Dong, Chuanpeng
Shao, Wei
Zaid, Mohammad Abu
Huang, Xiaoqing
Wang, Yijie
Bartlett, Christopher
Zhang, Yan
Walker, Brian A.
Liu, Yunlong
Huang, Kun
Zhang, Jie
author_facet Johnson, Travis S.
Yu, Christina Y.
Huang, Zhi
Xu, Siwen
Wang, Tongxin
Dong, Chuanpeng
Shao, Wei
Zaid, Mohammad Abu
Huang, Xiaoqing
Wang, Yijie
Bartlett, Christopher
Zhang, Yan
Walker, Brian A.
Liu, Yunlong
Huang, Kun
Zhang, Jie
author_sort Johnson, Travis S.
collection PubMed
description We propose DEGAS (Diagnostic Evidence GAuge of Single cells), a novel deep transfer learning framework, to transfer disease information from patients to cells. We call such transferrable information “impressions,” which allow individual cells to be associated with disease attributes like diagnosis, prognosis, and response to therapy. Using simulated data and ten diverse single-cell and patient bulk tissue transcriptomic datasets from glioblastoma multiforme (GBM), Alzheimer’s disease (AD), and multiple myeloma (MM), we demonstrate the feasibility, flexibility, and broad applications of the DEGAS framework. DEGAS analysis on myeloma single-cell transcriptomics identified PHF19(high) myeloma cells associated with progression. Availability: https://github.com/tsteelejohnson91/DEGAS. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13073-022-01012-2.
format Online
Article
Text
id pubmed-8808996
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-88089962022-02-03 Diagnostic Evidence GAuge of Single cells (DEGAS): a flexible deep transfer learning framework for prioritizing cells in relation to disease Johnson, Travis S. Yu, Christina Y. Huang, Zhi Xu, Siwen Wang, Tongxin Dong, Chuanpeng Shao, Wei Zaid, Mohammad Abu Huang, Xiaoqing Wang, Yijie Bartlett, Christopher Zhang, Yan Walker, Brian A. Liu, Yunlong Huang, Kun Zhang, Jie Genome Med Method We propose DEGAS (Diagnostic Evidence GAuge of Single cells), a novel deep transfer learning framework, to transfer disease information from patients to cells. We call such transferrable information “impressions,” which allow individual cells to be associated with disease attributes like diagnosis, prognosis, and response to therapy. Using simulated data and ten diverse single-cell and patient bulk tissue transcriptomic datasets from glioblastoma multiforme (GBM), Alzheimer’s disease (AD), and multiple myeloma (MM), we demonstrate the feasibility, flexibility, and broad applications of the DEGAS framework. DEGAS analysis on myeloma single-cell transcriptomics identified PHF19(high) myeloma cells associated with progression. Availability: https://github.com/tsteelejohnson91/DEGAS. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13073-022-01012-2. BioMed Central 2022-02-01 /pmc/articles/PMC8808996/ /pubmed/35105355 http://dx.doi.org/10.1186/s13073-022-01012-2 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Method
Johnson, Travis S.
Yu, Christina Y.
Huang, Zhi
Xu, Siwen
Wang, Tongxin
Dong, Chuanpeng
Shao, Wei
Zaid, Mohammad Abu
Huang, Xiaoqing
Wang, Yijie
Bartlett, Christopher
Zhang, Yan
Walker, Brian A.
Liu, Yunlong
Huang, Kun
Zhang, Jie
Diagnostic Evidence GAuge of Single cells (DEGAS): a flexible deep transfer learning framework for prioritizing cells in relation to disease
title Diagnostic Evidence GAuge of Single cells (DEGAS): a flexible deep transfer learning framework for prioritizing cells in relation to disease
title_full Diagnostic Evidence GAuge of Single cells (DEGAS): a flexible deep transfer learning framework for prioritizing cells in relation to disease
title_fullStr Diagnostic Evidence GAuge of Single cells (DEGAS): a flexible deep transfer learning framework for prioritizing cells in relation to disease
title_full_unstemmed Diagnostic Evidence GAuge of Single cells (DEGAS): a flexible deep transfer learning framework for prioritizing cells in relation to disease
title_short Diagnostic Evidence GAuge of Single cells (DEGAS): a flexible deep transfer learning framework for prioritizing cells in relation to disease
title_sort diagnostic evidence gauge of single cells (degas): a flexible deep transfer learning framework for prioritizing cells in relation to disease
topic Method
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8808996/
https://www.ncbi.nlm.nih.gov/pubmed/35105355
http://dx.doi.org/10.1186/s13073-022-01012-2
work_keys_str_mv AT johnsontraviss diagnosticevidencegaugeofsinglecellsdegasaflexibledeeptransferlearningframeworkforprioritizingcellsinrelationtodisease
AT yuchristinay diagnosticevidencegaugeofsinglecellsdegasaflexibledeeptransferlearningframeworkforprioritizingcellsinrelationtodisease
AT huangzhi diagnosticevidencegaugeofsinglecellsdegasaflexibledeeptransferlearningframeworkforprioritizingcellsinrelationtodisease
AT xusiwen diagnosticevidencegaugeofsinglecellsdegasaflexibledeeptransferlearningframeworkforprioritizingcellsinrelationtodisease
AT wangtongxin diagnosticevidencegaugeofsinglecellsdegasaflexibledeeptransferlearningframeworkforprioritizingcellsinrelationtodisease
AT dongchuanpeng diagnosticevidencegaugeofsinglecellsdegasaflexibledeeptransferlearningframeworkforprioritizingcellsinrelationtodisease
AT shaowei diagnosticevidencegaugeofsinglecellsdegasaflexibledeeptransferlearningframeworkforprioritizingcellsinrelationtodisease
AT zaidmohammadabu diagnosticevidencegaugeofsinglecellsdegasaflexibledeeptransferlearningframeworkforprioritizingcellsinrelationtodisease
AT huangxiaoqing diagnosticevidencegaugeofsinglecellsdegasaflexibledeeptransferlearningframeworkforprioritizingcellsinrelationtodisease
AT wangyijie diagnosticevidencegaugeofsinglecellsdegasaflexibledeeptransferlearningframeworkforprioritizingcellsinrelationtodisease
AT bartlettchristopher diagnosticevidencegaugeofsinglecellsdegasaflexibledeeptransferlearningframeworkforprioritizingcellsinrelationtodisease
AT zhangyan diagnosticevidencegaugeofsinglecellsdegasaflexibledeeptransferlearningframeworkforprioritizingcellsinrelationtodisease
AT walkerbriana diagnosticevidencegaugeofsinglecellsdegasaflexibledeeptransferlearningframeworkforprioritizingcellsinrelationtodisease
AT liuyunlong diagnosticevidencegaugeofsinglecellsdegasaflexibledeeptransferlearningframeworkforprioritizingcellsinrelationtodisease
AT huangkun diagnosticevidencegaugeofsinglecellsdegasaflexibledeeptransferlearningframeworkforprioritizingcellsinrelationtodisease
AT zhangjie diagnosticevidencegaugeofsinglecellsdegasaflexibledeeptransferlearningframeworkforprioritizingcellsinrelationtodisease