Cargando…
SPL9 mediates freezing tolerance by directly regulating the expression of CBF2 in Arabidopsis thaliana
BACKGROUND: Freezing stress inhibits plant development and causes significant damage to plants. Plants therefore have evolved a large amount of sophisticated mechanisms to counteract freezing stress by adjusting their growth and development correspondingly. Plant ontogenetic defense against drought,...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8809014/ https://www.ncbi.nlm.nih.gov/pubmed/35109794 http://dx.doi.org/10.1186/s12870-022-03445-8 |
Sumario: | BACKGROUND: Freezing stress inhibits plant development and causes significant damage to plants. Plants therefore have evolved a large amount of sophisticated mechanisms to counteract freezing stress by adjusting their growth and development correspondingly. Plant ontogenetic defense against drought, high salt, and heat stresses, has been extensively studied. However, whether the freezing tolerance is associated with ontogenetic development and how the freezing signals are delivered remain unclear. RESULTS: In this study, we found that the freezing tolerance was increased with plant age at the vegetative stage. The expressions of microRNA156 (miR156) and SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 9 (SPL9), playing roles in regulation of ontogenetic development, were induced by cold stress. Overexpression of SPL9 (rSPL9) promoted the expression of C-REPEAT BINDING FACTOR 2 (CBF2) and hereafter enhanced the freezing tolerance. Genetic analysis indicated that the effect of rSPL9 on freezing tolerance is partially restored by cbf2 mutant. Further analysis confirmed that SPL9 directly binds to the promoter of CBF2 to activate the expression of CBF2, and thereafter increased the freezing tolerance. CONCLUSIONS: Therefore, our study uncovers a new role of SPL9 in fine-tuning CBF2 expression and thus mediating freezing tolerance in plants, and implies a role of miR156-SPL pathway in balancing the vegetative development and freezing response in Arabidopsis. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12870-022-03445-8. |
---|