Cargando…
Deep structured residual encoder-decoder network with a novel loss function for nuclei segmentation of kidney and breast histopathology images
To improve the process of diagnosis and treatment of cancer disease, automatic segmentation of haematoxylin and eosin (H & E) stained cell nuclei from histopathology images is the first step in digital pathology. The proposed deep structured residual encoder-decoder network (DSREDN) focuses on t...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8809220/ https://www.ncbi.nlm.nih.gov/pubmed/35125928 http://dx.doi.org/10.1007/s11042-021-11873-1 |
_version_ | 1784643978866458624 |
---|---|
author | Chanchal, Amit Kumar Lal, Shyam Kini, Jyoti |
author_facet | Chanchal, Amit Kumar Lal, Shyam Kini, Jyoti |
author_sort | Chanchal, Amit Kumar |
collection | PubMed |
description | To improve the process of diagnosis and treatment of cancer disease, automatic segmentation of haematoxylin and eosin (H & E) stained cell nuclei from histopathology images is the first step in digital pathology. The proposed deep structured residual encoder-decoder network (DSREDN) focuses on two aspects: first, it effectively utilized residual connections throughout the network and provides a wide and deep encoder-decoder path, which results to capture relevant context and more localized features. Second, vanished boundary of detected nuclei is addressed by proposing an efficient loss function that better train our proposed model and reduces the false prediction which is undesirable especially in healthcare applications. The proposed architecture experimented on three different publicly available H&E stained histopathological datasets namely: (I) Kidney (RCC) (II) Triple Negative Breast Cancer (TNBC) (III) MoNuSeg-2018. We have considered F1-score, Aggregated Jaccard Index (AJI), the total number of parameters, and FLOPs (Floating point operations), which are mostly preferred performance measure metrics for comparison of nuclei segmentation. The evaluated score of nuclei segmentation indicated that the proposed architecture achieved a considerable margin over five state-of-the-art deep learning models on three different histopathology datasets. Visual segmentation results show that the proposed DSREDN model accurately segment the nuclear regions than those of the state-of-the-art methods. |
format | Online Article Text |
id | pubmed-8809220 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Springer US |
record_format | MEDLINE/PubMed |
spelling | pubmed-88092202022-02-02 Deep structured residual encoder-decoder network with a novel loss function for nuclei segmentation of kidney and breast histopathology images Chanchal, Amit Kumar Lal, Shyam Kini, Jyoti Multimed Tools Appl 1197: Advances in Soft Computing Techniques for Visual Information-based Systems To improve the process of diagnosis and treatment of cancer disease, automatic segmentation of haematoxylin and eosin (H & E) stained cell nuclei from histopathology images is the first step in digital pathology. The proposed deep structured residual encoder-decoder network (DSREDN) focuses on two aspects: first, it effectively utilized residual connections throughout the network and provides a wide and deep encoder-decoder path, which results to capture relevant context and more localized features. Second, vanished boundary of detected nuclei is addressed by proposing an efficient loss function that better train our proposed model and reduces the false prediction which is undesirable especially in healthcare applications. The proposed architecture experimented on three different publicly available H&E stained histopathological datasets namely: (I) Kidney (RCC) (II) Triple Negative Breast Cancer (TNBC) (III) MoNuSeg-2018. We have considered F1-score, Aggregated Jaccard Index (AJI), the total number of parameters, and FLOPs (Floating point operations), which are mostly preferred performance measure metrics for comparison of nuclei segmentation. The evaluated score of nuclei segmentation indicated that the proposed architecture achieved a considerable margin over five state-of-the-art deep learning models on three different histopathology datasets. Visual segmentation results show that the proposed DSREDN model accurately segment the nuclear regions than those of the state-of-the-art methods. Springer US 2022-02-02 2022 /pmc/articles/PMC8809220/ /pubmed/35125928 http://dx.doi.org/10.1007/s11042-021-11873-1 Text en © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
spellingShingle | 1197: Advances in Soft Computing Techniques for Visual Information-based Systems Chanchal, Amit Kumar Lal, Shyam Kini, Jyoti Deep structured residual encoder-decoder network with a novel loss function for nuclei segmentation of kidney and breast histopathology images |
title | Deep structured residual encoder-decoder network with a novel loss function for nuclei segmentation of kidney and breast histopathology images |
title_full | Deep structured residual encoder-decoder network with a novel loss function for nuclei segmentation of kidney and breast histopathology images |
title_fullStr | Deep structured residual encoder-decoder network with a novel loss function for nuclei segmentation of kidney and breast histopathology images |
title_full_unstemmed | Deep structured residual encoder-decoder network with a novel loss function for nuclei segmentation of kidney and breast histopathology images |
title_short | Deep structured residual encoder-decoder network with a novel loss function for nuclei segmentation of kidney and breast histopathology images |
title_sort | deep structured residual encoder-decoder network with a novel loss function for nuclei segmentation of kidney and breast histopathology images |
topic | 1197: Advances in Soft Computing Techniques for Visual Information-based Systems |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8809220/ https://www.ncbi.nlm.nih.gov/pubmed/35125928 http://dx.doi.org/10.1007/s11042-021-11873-1 |
work_keys_str_mv | AT chanchalamitkumar deepstructuredresidualencoderdecodernetworkwithanovellossfunctionfornucleisegmentationofkidneyandbreasthistopathologyimages AT lalshyam deepstructuredresidualencoderdecodernetworkwithanovellossfunctionfornucleisegmentationofkidneyandbreasthistopathologyimages AT kinijyoti deepstructuredresidualencoderdecodernetworkwithanovellossfunctionfornucleisegmentationofkidneyandbreasthistopathologyimages |